当前位置:文档之家› 《大学物理》下册复习资料

《大学物理》下册复习资料

《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。

i ε方向即感应电流的方向,在电源内由负极指向正极。

由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。

①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。

(注意)一般取B v⨯方向为 d 方向。

如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。

(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S tB i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。

(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。

2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。

(方向举例:1线圈电动势阻碍2线圈中电流在1线圈中产生的磁通量的变化) 若dtdI dtdI 12=则有2112εε=; 212MI =ψ,121MI =ψ,M M M 2112==;互感系数1221I I M ψ=ψ=3. 电磁场与电磁波位移电流:S d t DI S D ⋅∂∂⎰=,t D j D ∂∂= (各向同性介质E D ε=) 下标C 、D 分别表示传导电流、位移电流。

全电流定律:⎰⎰⋅∂∂+=+=⋅SC D C LS d )tDj (I I d H; 全电流:Dc s I I I +=,D C S j j j += 麦克斯韦方程组的意义(积分形式) (1)iSq S d D ⎰∑=⋅(电场中的高斯定理——电荷总伴有电场,电场为有源场)(2) S d tB d E L S⋅∂∂-=⋅⎰⎰ (电场与磁场的普遍关系——变化的磁场必伴随电场) B ∂ i E(3)0S d B S=⋅⎰ (磁场中的高斯定理——磁感应线无头无尾,磁场为无源场)(4) ⎰⎰⋅∂∂+=⋅S c L S d tD j d H)( (全电流定律——电流及变化的电场都能产生磁场) 其中:dt /d S d )t /B (m Φ=⋅∂∂⎰ ,dt /d S d )t /D (e Φ=⋅∂∂⎰ ,∑⎰=⋅c c I S d j二、简谐振动1. 简谐运动的定义:(1)kx F -=合;(2)x dtxd 222ω-=;(3)x=Acos(ωt+φ) 弹簧振子的角频率mk T=πν==ωπ222. 求振动方程)t cos(A xφ+ω=——由已知条件(如t=0时0x 的大小,v 0的方向→正、负)求A 、φ。

其中求φ是关键和难点。

(其中φ的象限要结合正弦或余弦式确定)可直接写φ的情况:振子从x 轴正向最远端m x 处由静止释放时φ=0,A =m x ,从x 轴负向最远端由静止释放时πφ=(1) 公式法: (一般取|φ|≤π)[说明] 同时应用上面左边的两式即可求出A 和φ值(同时满足φsin 、φcos 的正、负关系)。

如果用上面的tg φ式求φ将得到两个值,这时必须结合φsin 或φcos 的正、负关系判定其象限,也可应用旋转矢量确定φ值或所在象限。

(2) 旋转矢量法:由t=0时0x 的大小及v 0的方向可作出旋转矢量图。

反之,由图可知A 、φ值及v 0方向。

(3) 振动曲线法:由x-t 图观察A 、T 。

由特征点的位移、速度方向(正、负),按方法(1)求φ。

其中振动速度的方向是下一时刻的位置移动方向,它不同于波动中用平移波形图来确定速度方向。

3. 简谐振动的能量:E k =221mv , E p =221kx , E=E k + E p =221kA 。

k E2A =[注意] 振子与弹簧的总机械能E 守恒,E 等于外界给系统的初始能量(如作功)。

4. 振动的合成: x=x 1+x 2=A 1cos(ωt+φ1)+A 2cos(ωt+φ2)= Acos(ωt+φ)其中)cos(A A 2A A A 12212221φ-φ++=,22112211cos A cos A sin A sin A 1tg φ+φφ+φ-=φ当Δφ=φ2-φ1=2k π时: A=A 1+A 2 (加强) 当Δφ=φ2-φ1=(2k+1)π时: A=|A 1-A 2| (减弱)[注意] 上式求出的φ对应两个值,必须根据v 0的方向确定其中的正确值(具体方法同上面内容2.中的说明)。

如果同一方向上两个振动同相位(或反相位),则将两分振动的函数式相加(或相减),就可得到合振动。

三、简谐波u T==λνλ,ω=2πν,κ=2π/λ。

ν由振源的振动决定,u 、λ因介质的性质而异。

1. 求波动方程(波函数)的方法(1)已知原点O 处的振动方程:直接由y 0=Acos(ωt+φ)写出波动方程y=Acos[ω(t ux-)+φ][注意] 当波沿x 轴负向传播时,上式中x 前改为+号。

波动方程表示x 轴上任一点(坐标为x )的振动。

(原点处振动传到x 处需时间等于λωπ=x2ux,即x 处相位比O 点落后2πx /λ。

上面两式φ为同一值)如果没有直接给出O 点的振动方程,也可以按【四】中所述的方法,由题给条件求出原点处的振动式,再改写为波动式。

(2) 先设波动方程(波沿X 轴正向传播时)/2cos(φ+λπ-ω=x t A y ,波沿x 轴负向传播时x 前符号为+),并写出速度式)/2sin(/φ+λπ-ωω-=∂∂=x t A t y v ,根据题给条件求A 、ω、φ。

其方法与求振动方程相似。

公式法:将题中条件(如t =0时x 处y 值及v 正负)代入波动方程与速度式,可联立求解φ值。

波动曲线法:由图可知A 、λ、u 的方向(决定波动方程中x 项的符号),以及波形图所对应的t’时刻各质元的位移、速度方向(按波速方向平移波动曲线可得) 。

按公式法,由x 、v 值可求出φ,如果给出了0≠t 时的波形图,还可求出ω。

旋转矢量法:根据某一时刻(t=0或t’时刻)、某一点的y 值以及v 的方向作矢量图,可确定φ值。

对两列波在某一点处的合振动,由φ1与φ2作相量图,对特殊角可直接求φ,对一般角可确定φ的象限。

2. 由波动方程求某处质元的振动方程与速度:将x 值代入上面的波动方程与速度公式即可,也可画振动曲线。

这时,用加下标的y 表示具体点的振动位移(不要将其写作x ) 。

3. 波的能量 波的传播是能量的传播。

在传播过程中质元的动能和势能在任何时刻都相等(与质点的振动不同),在平衡位置处ΔW k =ΔW p =2221A m ω∆(最大),在最大位移处ΔW k =ΔW p =04. 波的干涉(两相干波的叠加) ①相干条件:频率相同,振动方向一致,位相差恒定;②相位差与相长干涉、相消干涉:Δφ=φ2-φ1==)-(12λπ2r r {)(减弱)(加强2λ1212)1+2(±=-=Δπ)1+2(±λ±=-=Δπ2±k r r r k k r r r k5. 半波损失:波从波疏媒质(ρu 较小)传向波密媒质(ρu 较大),在反射点处,反射波与入射波的相位差Δφ=π,波程差Δ=λ21(相当于反射波多走了λ21)。

(注)相位差±π等价,但一般取+π,波程差λ±21等价。

6. 驻波:两列振幅相等的相干波,在同一直线上沿相反方向传播,所形成的分段振动的现象。

相邻波节(或波腹)之间的距离为λ21。

取波腹为坐标原点,则波节位置=2/λk ,波腹位置=2/)(21λ+k(k=0,1,2…)弦线上形成驻波的条件:L =2/λn (n=1,2…)波从波疏媒质传向固定端并形成驻波时,是半波反射,固定端是波节;波从波密媒质传向自由端并形成驻波时,是全波反自由端是波腹。

注意:对于角频率相同的两个振动或两列波的合成问题,如果初相位为2/π±时可将方程式化为正弦或余弦式,再直接相加。

四、光的干涉1. 获得相干光的方法:把一个光源的一点发出的光分为两束,具体有分波阵面法和分振幅法2. 光程:光程nr L = (光在介质中传播r 距离,与光在真空中传播nr 距离时对应的相位差相同)相位差φ∆与光程差∆的关系:(相消)(相长)2)1k 2()1k 2(k k 2{2λ+=∆⇒π+λ=∆⇒π=λ∆π=φ∆ 在一条光线传播的路径上放置折射率为n ,厚度为d 的透明介质,引起的光程改变为(n-1)d ;介质内n /'λ=λ 3. 杨氏双缝干涉:分波阵面法,干涉条纹为等间隔的直条纹。

(入射光为单色光,光程差Δ=dsin θ) 明条纹:dsin θ=±k λ (中央明纹对应于k=0,θ=0) 中心位置x k =D tg θ≈Dsin θ=±k λd D( k=0,1,2,…) 暗纹:dsin θ=±212+k λ,中心位置x k =Dtg θ≈Dsin θ=±212+k λdD ( k=0,1,2,3,…)相邻明(暗)纹间隔:Δx =d Dλ,相邻两明(或暗)纹对应的光程差为λ, 相邻明、暗纹光程差为λ/2典型问题:在缝S 1上放置透明介质(折射率为n,厚度为 b ),求干涉条纹移动方向、移动的条纹数目、条纹移动的距离。

分析: (1)判断中央明纹(Δ=0)的移动。

在缝S 1上放置透明介质后,上边光路的光程增大(n-1)d ,只有下边光路的光程也增大,由12r r >可知,新的中央明纹在O 点上方,因此条纹整体向上移动。

相关主题