当前位置:文档之家› 化工热力学课后习题答案

化工热力学课后习题答案

2 习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。和,如一 体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度 的真空。当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下

达到平衡,,,) 2. 封闭体系的体积为一常数。(错)

3. 封闭体系中有两个相。在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对) 4. 理想气体的焓和热容仅是温度的函数。(对) 5. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)

6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P(T,V)的自变量中只有一个强度 性质,所以,这与相律有矛盾。(错。V也是强度性质) 7. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终

态的温度分别为T1和T2,则该过程的 ;同样,对于初、终态压力相等的过程有 。(对。状态函数的变化仅决定于初、终态与途径无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中 ),而一位学生认 为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。)

9. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致)

三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T的1mol理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为 i i f f

(以V表示)或 (以P表示)。 4. 封闭体系中的1mol理想气体(已知 ),按下列途径由T1、P1和V1可逆地变化至P ,则 mol ,温度为 和水 。 A 等容过程的 W= 0 ,Q= ,U= ,H= 。 B 等温过程的 W=,Q=,U= 0 ,H= 0 。 C 绝热过程的 W=,Q= 0 ,U=,H= 。 5. 在常压下1000cm3液体水膨胀1cm3,所作之功为 0.101325J;若使水的表面增大1cm2,我们所要作的功 是J (水的表张力是72erg cm-2)。 6. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg。 7. 1kJ=1000J=238.10cal=9869.2atm cm3=10000bar cm3=1000Pa m3。 8. 普适气体常数R=8.314MPa cm3 -1 1。 四、计算题 K-1 =83.14bar cm3 -1 mol -1 -1 K =8.314 J mol K-1 =1.980cal mol-1 K- 1. 一个绝热刚性容器,总体积为Vt T,被一个体积可以忽略的隔板分为A、B两室。两室装有不同

的理想气体。突然将隔板移走,使容器内的气体自发达到平衡。计算该过程的Q、W、 和最终的T 和P。设初压力是(a)两室均为P0;(b)左室为P0,右室是真空。

解:(a) (b) 2. 常压下非常纯的水可以过冷至0℃以下。一些-5℃的水由于受到干扰而开始结晶,由于结晶过程进行得

很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。已知冰的熔化热为333.4J g-1 在0 ~-5℃之间的热容为4.22J g-1 K-1 解:以1克水为基准,即 由于是等压条件下的绝热过程,即 ,或 3. 某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应 是理想气体经过相同过程所做功的多少倍?

解: 4. 对于 为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程 ,其中 ,试问,对于的理想气体,上述关系式又是如何? 以上a、b、c为常数。 解:理想气体的绝热可逆过程,

5. 一个0.057m3气瓶中贮有的1MPa和294K的高压气体通过一半开的阀门放入一个压力恒定为0.115MPa的气 柜中,当气瓶中的压力降至0.5MPa时,计算下列两种条件下从气瓶中流入气柜中的气体量。(假设气 体为理想气体) (a)气体流得足够慢以至于可视为恒温过程;

(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数)。 解:(a)等温过程

(b)绝热可逆过程,终态的温度要发生变化 K

mol mol 五、图示题 1. 下图的曲线Ta和Tb是表示封闭体系的1mol理想气体的两条等温线,56和23是两等压线,而64和31是两 等容线,证明对于两个循环1231和4564中的W是相同的,而且Q也是相同的。

解:1-2-3-1循环,

4-5-6-4循环, 所以 和 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成固体,必须经过液相。(错。如可以直接变成固体。) 2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 3. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流 体。) 4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所 以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。(错。如温度大于Boyle温度时,Z>1。)

5. 理想气体的虽然与P无关,但与V有关。(对。因

。) 6. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。 (对。则纯物质的P-V相图上的饱和汽体系和饱和液体系曲线可知。) 7. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自由度是 零,体系的状态已经确定。) 8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。(错。它们相差一个汽化热力学能, 当在临界状态时,两者相等,但此时已是汽液不分) 9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。(对。这是纯物质的汽液平衡准 则。) 10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。(错。) 11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。(错。只有吉氏函 数的变化是零。)

12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。) 13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。(错。三对数对应态原理不能适用于 任何流体,一般能用于正常流体normal fluid) 14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。(错。简单流体系指一类非极性的球形 流,如Ar等,与所处的状态无关。)

二、选择题

1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。参考P-V图上的亚临 界等温线。) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T温度下的过冷纯液体的压力P(A。参考P-V图上的亚临界等温线。)

A. > B. < C. = 3. T温度下的过热纯蒸汽的压力P(B。参考P-V图上的亚临界等温线。)

A. > B. < C. = 4. 纯物质的第二virial系数B(A。virial系数表示了分子间的相互作用,仅是温度的函数。) A 仅是T的函数 B 是T和P的函数 C 是T和V的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须至少用到(A。要表示出等温线在临界 点的拐点特征,要求关于V的立方型方程) A. 第三virial系数 B. 第二virial系数 C. 无穷项 D. 只需要理想气体方程 6. 当时,纯气体的的值为(D。因

) A. 0 B. 很高的T时为0 C. 与第三virial系数有关 D. 在Boyle温度时为零 三、填空题

1. 纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为和 。

2. 表达纯物质的汽平衡的准则有 (吉氏函数)、 (Claperyon方程)、(Maxwell等面积规则)。它们能(能/不能)推广到 其它类型的相平衡。

3. Lydersen、Pitzer、Lee-Kesler和Teja的三参数对应态原理的三个参数分别为、、 和。 4. 对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,在 P-T图上是重叠的(重叠/分开),而在P-V图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,

露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。纯物质汽液平 衡时,压力称为蒸汽压,温度称为沸点。

5. 对三元混合物,展开第二virial系数 ,其中,涉及了下标相同的virial系数有 ,它们表示两个相同分子间的相互作用;下标不同的virial系数有,它们表示两 个不同分子间的相互作用。

6. 对于三混合物,展开PR方程常数a的表达式,= ,其中,下标相同的 相互作用参数有,其值应为1;下标不同的相互作用参数有

到,在没有实验数据时,近似作零处理。 ,通常它们值是如何得到?从实验数据拟合得

相关主题