当前位置:文档之家› 最新二阶变系数线性微分方程的一些解法

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法第九节 二阶变系数线性微分方程的一些解法常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。

本节介绍处理这类方程的二种方法§9.1 降阶法在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。

考虑二阶线性齐次方程22dx y d +p(x) dxdy+q(x)y =0 (9.1)设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2)其中u =u(x)为未知函数,求导数有dx dy =y 1dx du +u dx dy 1求二阶导数有22dx y d =y 122dx u d +2dx du dxdy 1+u 212dx y d代入(9.1)式得y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x)dxdy 1+q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中212dx y d +p(x) dx dy 1+q(x)y 1≡0故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dxdu =0再作变量替换,令dxdy=z 得y 1dxdz +(2dx dy 1+p(x)y 1)z =0分离变量 z 1dz =-[1y 2+p(x)]dx两边积分,得其通解z =212y C e-∫p(x)dx其中C 2为任意常数积分得u =C 2∫21y 1e -∫p(x)dxdx +C 1代回原变量得(9.1)的通解y =y 1[C 1+C 2∫21y 1e -∫p(x)dxdx ]此式称为二阶线性方程的刘维尔(Liouville )公式。

综上所述,对于二阶线性齐次方程,若已知其一个非零特解,作二次变换,即作变换y =y 1∫zdx可将其降为一阶线性齐次方程,从而求得通解。

对于二阶线性非齐次方程,若已知其对应的齐次方程的一个特解,用同样的变换,因为这种变换并不影响方程的右端,所以也能使非齐次方程降低一阶。

例1. 已知y 1=x xsin 是方程22dx y d +x 2dxdy +y =0的一个解,试求方程的通解解 作变换 y =y 1∫zdx则有 dxdy =y 1z +dx dy 1∫zdx22dx y d =y 1dxdz +2dx dy 1z +212dx y d ∫zdx 代入原方程,并注意到y 1是原方程的解,有y 1dxdz +(2dx dy 1+dx dy 1)z =0即 dxdz=-2ctanx ·z积分得 z =xsin C 21于是 y =y 1∫zdx =xxsin [∫x sin C 21dx +C 2]=x x sin (-C 1ctanx +C 2)=x1(C 2sinx -C 1cosx) 这就是原方程的通解。

§9.2 常数变易法在第三节求一阶线性非齐方程通解时,我们曾对其对应的齐次方程的通解,利用常数变易法求得非齐次方程的通解。

对于二阶线性非齐次方程22dx y d +p(x) dxdy+p(x)y =f(x) (9.4)其中p(x),q(x),f(x)在某区间上连续,如果其对应的齐次方程22dx y d +p(x) dxdy+q(x)y =0的通解 y =C 1y 1+C 2y 2已经求得。

那么也可通过如下的常数变易法求得非齐次方程的通解。

设非齐次方程(9.4)具有形式 ~y =u 1y 1+u 2y 2 (9.5)的特解,其中u 1=u 1(x),u 2=u(x)是两个待定函数,对~y 求导数得~'y =u 1y ′1+u 2y ′2+y 1u ′1+y 2u ′2由于用(9.5)代入(9.4),可确定u 1,u 2的一个方程,为了同时确定这两个函数,还须添加一个条件,为计算方便,我们补充一个条件:y 1u ′1+y 2u ′2=0 这样~'y =u 1y ′1+u 2y ′2"y ~=u ′1y ″1+u ′2y ″2+u 1y ′1+u 2y ′2代入方程(9.3),并注意到y 1,y 2是齐次方程的解,整理得u ′1y ′1+u ′2y ′2=f(x)与补充条件联列得方程组⎩⎨⎧=++=+)x (f 'u 'y 'y 'u 'y 0'u y 'u y 222112211因为y 1,y 2线性无关,即12y y ≠常数,所以(12y y )′=211221y 'y y 'y y -≠0设w(x)=y 1y ′2-y 2y ′1,则有w(x)≠0所以上述方程组有唯一解。

解得⎪⎪⎩⎪⎪⎨⎧=-=-=--=)x (w )x (f y 'y y 'y y )x (f y 'u )x (w )x (f y 'y y 'y y )x (f y 'u 11221122122121积分并取其一个原函数得 u 1=-∫)x (w )x (f y 2⋅dxu 2=∫)x (w )x (f y 1⋅dx则所求特解为 ~y =y 1∫)x (w )x (f y 2⋅-dx +y 2∫)x (w )x (f y 1⋅dx所求方程的通解 y =Y +~y =C 1y 1+C 2y 2+y 1∫)x (w )x (f y 2⋅-dx +y 2∫)x (w )x (f y 1⋅dx上述求特解的方法也适用于常系数非齐次方程情形。

例1. 求方程22dx y d -x 1dxdy =x 的通解解 先求对应的齐次方程22dx y d -x 1dxdy =0的通解,由 22dx y d =x 1dxdydxdy 1·d(dx dy )=x 1dx得 ln |dxdy|=ln |x |+ln|C |即 dxdy =Cx 得通解y =C 1x 2+C 2所以对应齐次方程的两个线性无关的特解是x 2和1。

为求非齐次方程的一个解~y 将C 1,C 2换成待定函数u 1,u 2,且u 1,u 2满足下列方程⎩⎨⎧=⋅+=⋅+x'u 0'xu 20'u 1'u x 21212解上述方程得 u ′1=21 u ′2=-21x2积分并取其一原函数得 u 1=21x ,u 2=-6x 3于是原方程的一个特解为~y =u 1·x 2+u 2·1=2x 3-6x 3=3x 3从而原方程的通解为y =C 1x 2+C 2+3x3第十节 数学建模(二)——微分方程在几何、物理中的应用举例一、镭的衰变例1. 镭、铀等放射性元素因不断地放出各种射线而逐渐减少其质量,称为放射性物的衰变。

由实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量。

解 用x 表示该放射性物质在时刻t 的现存物质,则dtdx表示x 在时刻t 的衰变速度,于是“衰变速度与现存质量成正比”可表示为dtdx=-kx 这是一个以x 为未知函数的一阶方程,它就是放射性元素衰变的数学模型。

其中k >0是比例常数,称为衰变常数,因元素的不同而异。

方程右端的负号表示当时间t 增加时,质量x 减少,即t >0时,dtdx<0。

解这个方程得通解x =Ce-kt若已知当t =t 0时,x =x 0,即x |0t t ==x 0代入方程可得 C =x 0e 0kt 得特解 x =x 0e )t t (k 0--它反映了某种放射性元素衰变的规律。

二、正交轨线已知曲线族方程F(x,y,C)=0,其中包含了一个参数C ,当C 固定时就得到一条曲线,当C 改变就得整族曲线,称为单参数曲线族。

例如y =Cx 2为一抛物线族。

图6-3如果存在另一族曲线G(x,y,C)=0,其每一条曲线都与曲线族F(x,y,C)=0的每条曲线垂直相交,即不同族中的曲线在交点处的切线互相垂直。

则称G(x,y,C)=0为F(x,y ,C)=0的正交轨线。

将曲线族方程F(x,y,C)=0对x 求导与F(x,y,C)=0联列并消去常数C ,得曲线族上任一点的坐标(x,y)和曲线在该点的斜率y ′所满足的微分方程f(x,y,y ′)=0这就是曲线族F(x,y,C)=0所满足的微分方程。

因为正交轨线过点(x,y),且在该点与曲线族中过该点的曲线垂直,故正交轨线在点(x,y)处的斜率k =-'y 1于是可知曲线族F(x,y,C)=0的正交轨线满足方程f(x,y,-'y 1)=0这是正交轨线的数学模型,其积分曲线族(通解),就是所要求的正交轨线。

例2 求抛物线族y =Cx 2的正交轨线。

解 对y =Cx 2关于x 求导,得y ′=2Cx 与原方程联列⎩⎨⎧==Cx2'y Cx y 2消去C图6-4得微分方程 y ′=xy2将-'y 1代入y ′得所求抛物线的正交轨线微分方程-'y 1=x y2即 ydy =-2xdx积分得 4x 2+2y 2=C 2即抛物线族 y =Cx 2的正交轨线是一个椭圆族,如图6-4。

三、追迹问题例3. 开始时,甲、乙水平距离为1单位,乙从A 点沿垂直于OA 的直线以等速v 0向正比行走;甲从乙的左侧O 点出发,始终对准乙以nv 0(n >1)的速度追赶,求追迹曲线方程,并问乙行多远时,被甲追到。

图6-5解 如图6-5建立坐标系,设所求追迹曲线方程为 y =y(x)经过时刻t ,甲在追迹曲线上的点为p(x,y),乙在点B(1,v 0t)。

于是有tan θ=y ′=x1yt v 0-- (10.1)由题设,曲线的弧长OP 为 ∫x 02'y 1+dx =nv 0t解出v 0t 代入(10.1)得(1-x)y ′+y =n1∫x02'y 1+dx两边对x 求导,整理得(1-x)y ″=n12'y 1+这就是追迹问题的数学模型。

这是一个不显含y 的可降阶的方程,设y ′=p ,y ″=p ′代入方程得(1-x)p ′=n 12p 1+或 2p 1dp +=)x 1(n dx-两边积分得 ln(p +2p 1+)=-n1ln |1-x |+ln |C 1|即 p +2p 1+=n 1x1C -将初始条件 y ′|x =0=p |x =0=0代入上式,得C 1=1,于是y ′+2'y 1+=n x11- (10.2)两边同乘 y ′-2'y 1+,并化简得y ′-2'y 1+=-n x 1- (10.3)(10.2)与(10.3)两式相加,得y ′=21 (n x11--n x 1-)积分,得 y =21[-1n n - (1-x)n1n -+1n n + (1-x)n1n +]+C 2代入初始条件 y |x =0=0得C 2=1n n2-,所求追迹曲线方程为y =2n [1n )x 1(n1n +-+-1n )x 1(n1n ---]+1n n2-(n >1)甲追到乙时,即曲线上点P 的横坐标x =1,此时y =1n n2-即乙行走至离A 点1n n2-个单位距离时即被甲追到。

相关主题