第十章 矩阵位移法一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.2134123412341234( )二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
123ll4l5EI2EIEA(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)EI13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
l,0)14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
l l1342A , I AA /222A I , 2A15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
[][]k k 1112 [][]k k 2122 []k =ii iii单刚分块形式为 :16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。
,cos α=C ,sin α=S ,C C A ⋅=S S D S C B ⋅=⋅=,,各杆EA 相同。
l[]k EA l i=A B A BD B D A B D -ii---对称17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。
设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。
18、计算图示结构原始刚度矩阵的元素4544,K K 。
l19、用先处理法写出图示梁的整体刚度矩阵[]K 。
123llli 0123i i20、用先处理法写出图示梁的结构刚度矩阵[]K 。
123ll4lEI EI EI 2321、已知图示结构在整体坐标系中的单元刚度矩阵。
用先处理法集成结构刚度矩阵[]K 。
(用子块形式写出)。
[][]k k 1112 [][]k k 2122 []k =ii iii单刚分块形式为 :22、用先处理法写出图示结构的结构刚度矩阵[]K 。
E =常数。
ll)23、用先处理法写出图示刚架的结构刚度矩阵[]K ,只考虑弯曲变形。
EI EI EIEI=o olll24、用先处理法写出图示结构的结构刚度矩阵[]K 。
各杆长度为l ,EA 、EI 为常数。
ABCD25、用先处理法写出图示结构的结构刚度矩阵[]K 。
各杆长度为 l 。
ABCD EA EIEI226、用先处理法写出以子块表示的图示结构的结构刚度矩阵[]K 。
m12m27、用先处理法写出图示桁架的结构刚度矩阵[]K 。
已知各杆EA =常数。
[][]kkEA l ①②==--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥1010000010100000,整体坐标系中的单元刚度矩阵:[]k EA l ③=--------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥241111111111111111l28、用先处理法写出图示刚架结构刚度矩阵[]K 。
已知:[][][]k k k ①②③===⨯--------⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥1030000300000123001230030100030503000030000012300123003050030100429、计算图示结构结点3的等效结点荷载列阵{}P 3E 。
m224m43kN/m30、计算图示结构结点2的等效结点荷载列阵{}P 2E 。
l /2ql /2q31、计算图示结构结点2的等效结点荷载列阵{}P 2E 。
l /2ll /2l32、计算图示结构的综合结点荷载列阵{}P 。
l /2l /2l /2l /2ll33、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。
l /2l l /234、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。
m3m3m 4m 435、用先处理法计算图示连续梁的结点荷载列阵{}P 。
m4m4m4第十四章结构动力学一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a刚架的振动自由度为2,图b刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD的关系为ωω=。
D二、计算题:10、图示梁自重不计,求自振频率ω。
l l/411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
3m 3m24、忽略质点m 的水平位移,求图示桁架竖向振动时的自振频率ω。
各杆EA = 常数。
m 4m4m25、图示体系E P W I =⨯====-2102052048004kN /cm s kN, kN, cm 214,,θ。
求质点处最大动位移和最大动弯矩。
W4mm2t26、图示体系EI k =⨯⋅==2102035kN m s 2-1,,θ×1055N /m, P =×N 103。
kN W 10=。
求质点处最大动位移和最大动弯矩。
m2m2sin P27、求图示体系在初位移等于l/1000,初速度等于零时的解答。
θωω=020.( 为自振频率),不计阻尼。
l28、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。
/3P t sin( )29、已知:m P ==38t, kN ,干扰力转速为150r/min ,不计杆件的质量,EI =⨯⋅6103kN m 2。
求质点的最大动力位移。
2m 2m30、图示体系中,电机重kN 10=W 置于刚性横梁上,电机转速n r =500/min ,水平方向干扰力为) sin(kN 2)(t t P θ⋅=,已知柱顶侧移刚度kN/m 1002.14⨯=k ,自振频率ω=-100s1。
求稳态振动的振幅及最大动力弯矩图。
m31、图示体系中,kN 10=W ,质点所在点竖向柔度917.1=δ,马达动荷载Pt t ()sin()=4kN θ,马达转速n r =600/min 。
求质点振幅与最大位移。
32、图示体系中,W =8kN ,自振频率ω=-100s 1,电机荷载P (t ) = 5kN ·sin(θt ),电机转速n = 550r/min 。
求梁的最大与最小弯矩图。
2m 2m P t ()。