当前位置:文档之家› 电化学原理讲解

电化学原理讲解


电分析成为独立的方法学
• 三大定量关系的建立 1833年法拉第定律Q=nFM 1889年能斯特W.Nernst提出能斯特方程
1934年尤考维奇D.Ilkovic提出扩散电流方程 Id = kC
近代电分析方法
(1) 电极的发展:化学修饰电极、超微电极 (2) 多学科参与:生物电化学传感器 (3)与其他方法联用:光谱-电化学、HPLC-EC、
更灵敏的检测方法
循环伏安法
检测限10-5 mol/L
改变加载 电位的波形
示差脉冲伏安法(DPV) 方波伏安法(SWV)
检测限10-8 mol/L 扫描速率快
示差脉冲伏安法DPV Differential-Pulse Voltammetry
示差脉冲伏安法的激发信号(施加的电压)
示差脉冲伏安图
Differential-pulse voltammograms for a 1.3 × 10−5 M chloramphenicol solution.
方波伏安法SWV Square-wave Voltammograms
方波伏安法的激发信号(施加的电压)
方波伏安图
Square-wave voltammograms for TNT solutions of increasing concentration from 1 to 10 ppm (curves b–k), along with the background voltammogram (curve a) and resulting calibration plot (inset).
无/有液体接界电池
化学电池的阴极和阳极
发生氧化反应的电极称为阳极,发生还 原反应的电极叫做阴极。
一般把作为阳极的电极和有关的溶液体系写在左边,把
作为阴极的电极和有关的溶液体系写在右边。每一个不 同相的界面用一竖线表示,盐桥用两条竖线表示。
例:Zn + CuSO4
ZnSO4+Cu
阳极 Zn – 2e → Zn2+
饱和甘汞电极
Hg2Cl2;4.多孔物质;5.胶帽;
(saturated calomel electrode,SCE) 6.导线;7. Hg;8.纤维
以标准氢电极的电极电势为标准,
可以测得SCE的电势为0.2415V。
对电极(辅助电极)
对电极一般使用惰性贵金属材料如铂丝等, 以免在此表面发生化学反应,用于与工作 电极形成回路。
几个重要的参数
• 两个峰电位 阳极/氧化峰电位(Epa) 氧
• 两个峰电流
阴极/还原峰电位(Epc) 阳极/氧化峰电流(ipa )
化 过 程
还 原 过
阴极/氧化峰电流( ipc)

电位可定性! 电流可定量!
几个重要的参数
• 氧化还原电对的表观标准电极电位 E0’ = (Epa + Epc) / 2
• 两峰的电位差 ΔEp= Epa- Epc=0.059 / n (n为得失电子数,仅 适用于可逆反应)
Q: 已知铁氰化钾的ΔEp=0.08 V,那么铁氰化钾 的电极反应参与的电子数是多少?
电极过程可逆性的判断
• 可逆过程(如图A) 两峰的电位差 ipa/ipc≈1
• 准可逆过程 (如图B)ΔEp>0.059/n, ipa/ipc<1或>1 • 不可逆过程 (如图C) 只有一个峰
电化学
课程安排
一、电化学的发展史
二、电化学原理简介 (以三电极体系,循环伏 安法为例)
三、电化学的应用 1.小分子(抗氧化剂)的研究 2.蛋白质的电子传递研究 3.核酸检测
电化学的发展史
公元前600年, 希腊泰尔斯发现摩擦的琥珀 能吸引轻小物体
电化学的发展史
1752年, 美国富兰克林进行风筝实验,并以 此为基础设 计了避雷针。
工作电极
滴汞电极(极谱法) 铂电极 金电极 碳电极 热解石墨(PG)
玻碳(GC) 碳糊 碳纤维
参比电极
绝对电极电位无法得到,因此只
能以一共同参比电极构成原电池, 测定该电池电动势。常用的参比 电极有标准氢电极(见图)和饱 和甘汞电极(见图) 。
标准氢电极电极反应为:
2H+ +2e
H2
• 规定在任何温度下,氢标准电极 电位为零。
1753年,俄国著名电学家利赫曼为了验证 富兰克林的实验,不幸被雷电击死,这是 做电实验的第一个牺牲者。
电化学的发展史
1791年, 意大利伽伐尼的青蛙实验 (电化学的起源)
电化学的发展史
1799年, 伏特堆 (伏特电池/原电池的雏形)
电化学的发展史
1807年, 戴维电解木灰(potash)和苏打(soda), 分别得到钾(potassium)和钠(sodium)元素
表观电位与电解液pH的关系
• 对于质子参与的电化学过程: ΔE0’=(-0.058/n) *ΔpH (n为质子数)
• 即对于有一个质子参与的电化学反应, 溶液pH每增加1,其表观电极电位移动 的理论数值为-0.058 V
pH梯度实验
Q:已知其电位随pH的变 化为-0.032 V/pH, 那 么几个质子参与其中? A:
浓度梯度实验
扫描速度变化实验 一
峰电流值与扫描速度的平方根成正比—扩散控制
扫描速度变化实验 二
峰电流值与扫描速度成正比—吸附控制
循环伏安法的适用范围
• 研究一个新物质的电化学性质时的首选 • 用于电极反应的性质、机理和电极过程
动力学参数的研究 • 可用于定量分析 • 其他
其他电化学方法
• 示差脉冲伏安法(DPV) • 方波伏安法(SWV) • 交流阻抗法( EIS ) • 计时安培法 • ……
电化学的发展史
1889年能斯特W.Nernst提出能斯特方程 1908年H. J. S. Sand使用控制电位方法进 行了电解分析 1922 年,捷克科学家海洛夫斯基 J.Heyrovsky创立极谱法,于1959年获 Nobel奖 1934 年,尤考维奇 Ilkovic,提出扩散电流 理论,从理论上定量解释了伏安曲线 1942年A. Hickling研制成功三电极恒电位 仪。
参比电极
甘汞电极: 电极反应:Hg2Cl2(s)+2e =2Hg+2Cl−
能斯特公式为 :


0 Hg2Cl 2 /Hg

0.059 2
log (
1 [Cl ]
Hale Waihona Puke )21mol/ L

0 Hg2Cl 2 /Hg

0.059log[Cl
]/(1mol/
L)
由此可见:甘汞电极的电位取决于所用
KCl的浓度。利用KCl饱和溶液便制成 1.导线;2. KCl饱和溶液;3.
电化学工作站
循环伏安法(Cyclic Voltammetry)
• 基本原理 以一定的速率对工作电极施加三角波电 压,使电极上交替发生还原和氧化反应,并记录电 流-电势曲线。
三角波电压
循环伏安曲线
循环伏安图
铁氰化钾/亚铁氰化钾的循环伏安图
Fe(CN)63- + e = Fe(CN)64Fe(CN)64- - e = Fe(CN)63-
阴极 Cu2+ + 2e → Cu
原电池表示:
Zn∣ZnSO4‖CuSO4∣Cu
电极和电极电位
电极:在电化学电池中赖以进行电极反应 和传导电流从而构成回路的部分。
电极的电极电位:在电极与溶液的两相界 面上,存在的电位差即为电极的电极电位。
电化学三电极系统
• 工作电极(Working electrode) • 参比电极(Reference electrode) • 对电极(Auxiliary electrode)
戴维 (Humphry Davy 1778-1829)
电化学创始人
电化学的发展史
1833年, 法拉第电解定律
法拉第 (Michael Faraday 1791-1867)
法拉第电解定律:Q=nFM
Q: 电解消耗的电量 n: 化合价 F: 法拉第常数 1F=96487库仑/摩尔 M: 该物质的摩尔数
AFM-EC、SPR-EC (4) 集成化:电化学芯片
电化学分析的定位
• 光谱分析(紫外/荧光/拉曼…) • 电化学分析(电位、电流、电导、电量
分析…循环伏安/计时安培/交流阻抗…) • 色谱分析(液相/气相)
二、电化学的基本原理
原电池与电解池
原电池:能自发地将化学能转化为电能
电解池:需要消耗外部电源提供的电能,使电池内部发 生化学反应
某物质的循环伏安响应随pH的变化图
扩散控制下的理论电流
电化学物质平面扩散到面积为A的电极,假定扩散系数为D, 浓度为C,传递电子数为n,v 是扫描速率,根据Randles
Sevcik 方程可以得到一个理论电流值ip:
• 电流与电极面积成正比——用于计算电极有效表面积 • 与物质浓度成正比——定量分析的基础 • 与扫描速度的平方根成正比——判断反应类型的依据
相关主题