溶胶-凝胶法及制备粉体
二、凝胶-溶胶(Sol-gel)技术
溶胶(Sol):是具有液体特征的胶体体系,分散介质 为液体,分散相是固体粒子,分散的粒子大小在1~ 100nm之间 凝胶(Gel)是指胶体胶凝,具有固体特征的胶体 体系,被分散的物质形成连续的刚性网状骨架,网 络间具有亚微米级的孔隙,骨架空隙(亚微米级)中 充有液体或气体,凝胶聚合物链的平均长度大于一 微米,如果冻等。大多数凝胶是无定形的 溶胶凝胶法是指先制成溶胶,再使之胶凝、干燥、 热 分解(烧成),而得到所需材料的方法。 “溶胶-凝胶法”中的“溶胶”,一般是指液-固溶
溶胶凝胶法制备钛酸钡的工艺流程图
钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇 盐,遇水会发生剧烈的水解反应,如果有足 够的水参与反应,一般将生成性能稳定的氢 氧钛。
在Sol—Gel工艺中,必须严格地控制水的 掺量,甚至不掺水,而让溶液系统暴露在 空气中从空气中吸收水分,使水解反应不 充分(或不完全),其反应式可表示为
3)络和物法
使金属离子和含羟基的羧酸形成螯合物,适 当温度下缩合(使发生脂化反应)形成溶胶(Sol), 进一步蒸馏,除去生成的过量水,即进一步聚 脂化反应、缩合,形成凝胶(gel)
三种方法比较
Sol-Gel 过程类型
化学特征
调整pH值或加入电 解质使粒子表面电荷 中和,蒸发溶剂使粒 子形成凝胶
凝胶
1.密集的粒子形成凝胶网络 2.凝胶中固相含量较高 3.凝胶透明,强度较弱 1.由前驱体得到的无机聚合物构 成的凝胶网络 2.刚形成的凝胶体积与前驱体溶 液体积完全一样 3.证明凝胶形成的参数-凝胶时 间随着过程中的其它参数变化而 变化 4.凝胶透明
1.由氢键连接的络合物构成凝胶 网络 2.凝胶在湿气中可能会溶解 3.凝胶透明
或金属烷氧基化合物与过量的水反应得到凝胶状 的氢氧化物沉淀,然后用电解质(常用酸)通过 胶溶作用生成稳定的胶体。溶胶中微粒的大小依 赖于过程的各种参数
2)化学法:又可称为聚合物溶胶法(有机聚合 物胶、化学胶) 以金属醇盐为前驱物,同样,必须将醇盐溶于 相应的有机溶剂中,然后控制加水量,使醇盐 发生部分水解,接着进行聚合反应而形成溶胶。 其制备过程称为PMU路线(Polymerization of Molecular Units) 溶胶-凝胶转变是以簇为单位通过缩合反应长 大,直到这些胶体簇生成凝胶。该路线可以得 到比粒子胶更小的颗粒尺寸和更精细的结构
如本实验可能发生典型的聚合反应的结构反应式 为
实验中的水解及聚合反应在缓慢吸收空气 中水分的过程中不断地进行着,实际上是 金属有机化合物经过脱酸脱醇反应,金属 Ti4+和Ba2+通过桥氧键聚合成了有机大分子 团链,随着这种分子团链聚合度的增大, 溶液粘度增加,溶胶特征明显,经过一定 时间就会变成半固体透明的凝胶。凝胶经 过烘干,煅烧得到钛酸钡粉末。
溶胶-凝胶法
1846年 Ebelmen 发现凝胶
一、溶胶凝胶的历史
1853 Farady, 实验室Gold sol, oldest sol, still stable now days;
1861 Thomas Graham, 胶体化学作为一门学说; colloid 胶体, sol溶胶, gel凝胶, peptization胶溶, dialysis渗析, syneresis离浆
前驱体
前驱体溶胶是由 金属无机化合物 与添加剂之间的 反应形成的密集 粒子
应用
胶体型
粉末 薄膜
无机 聚合物型
前驱体水解和聚合
主要是金属烃氧 化物
薄膜 块体 纤维 粉末
络合物型
络合反应导致较大混 合配合体的络合物的 形成
金属醇盐、硝酸 盐或醋酸盐
薄膜 粉末 纤维
3、溶胶凝胶的工艺步骤
以 醇 盐 如 Al(OC3H7)3、Al(OC4H9)3、Ti(i-OC3H7)4、 Zr(i-OC3H7)4、Si(OC2H5)4、Si(OCH3)4或金属无机盐如 AlCl3为起始原料溶于溶剂中,制成溶液, 在一定的条件 下通过水解-聚合,形成稳定的溶胶,通过胶凝作用转 化成凝胶,再经干燥、热处理和烧结最终得到特定无机 材料。整个过程的主要阶段为: 溶胶的制备:溶剂化作用,水解与聚合 溶胶向凝胶的转变:胶凝作用,胶凝点 凝胶向特定无机材料的转变。
缩合产物不断发生水解、缩聚反应,溶液 的粘度不断增加。最终形成凝胶——含金 属—氧—金属键网络结构的无机聚合物。 正是由于金属—氧—金属键的形成,使 Sol—Gel法能在低温下合成材料。 Sol—Gel技术关键就在控制条件发生水解、 缩聚反应形成溶胶、凝胶。
2、溶胶凝胶法分类
按其产生溶胶及溶胶向凝胶演变的过程机 制可以分为:胶体粒子路线、有机聚合物 路线和络合物法。 1)胶体粒子路线:溶胶称粒子溶胶或物理胶, 其制备过程称为DCS路线(Destabilization of Colloidal Solutions)。 · 采用无机盐或金属烷氧基化合物为前驱物,将盐
Ti(OR)4 +χH2O = Ti(OR)4 -χOHχ + χROH (1)
式中, R=C4H9为丁烷基,RO或OR为丁烷氧基。
未完全水解反应的生成物Ti(R)4- χ (OH) χ 中的(OH)-极易与丁烷基(R)或乙羰基 (R´=CH3CO)结合,生成丁醇或乙酸,而使金 属有机基团通过桥氧聚合成有机大分子。
1971年,德国H.Dislich 成功地制备出SiO2-B2OAl2O3-Na2O-K2O多组分玻璃, 80年代后,玻璃、氧化物涂层、功能陶瓷粉料、复合 氧化物陶瓷材料(粉体、薄膜、纤维、晶须、块体)
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感器。 3. 法国的J.Livage制备的生物寄生检测器
溶胶-凝胶工艺参数
溶胶凝胶 溶胶-凝胶 前驱体选择 反应配比 反应时间 溶液pH值 反应时间 金属离子半径 络合剂 催化剂 静 止 老 化 凝胶处理 老化方式 加 入 老 化 液 老化时间 常 压 干 燥 干燥及热处理 干燥方法 冷 冻 干 燥 超 临 界 干 燥 热处理工艺
溶胶凝胶法制备超细粉体的优点: 温和的制备反应条件; 纯度高; 颗粒细,易于制备纳米尺度的粉体,粒径分 布窄; 分散性好,活性高,烧结温度比高温固相反 应温度低得多; 化学组成与相组成均匀,尤其对多组分体系 以此粉体为前驱物,所得的功能材料性质优 异
定义
是指金属有机或无机化合物经过溶液、溶胶、 凝胶而固化、再经过热处理而成氧化物或其 它化合物固体的方法。
溶解 前驱体
水解
缩聚
老化
溶液
溶胶Байду номын сангаас
凝胶
凝胶
1、溶胶-凝胶法的基本原理
1)水解反应:
M(OR)4 + χ H2O = M(OR)4-OH + χ ROH
2)缩合-聚合反应: 失水缩合 -M-OH + OH-M- =-M-O-M- +H2O 失醇缩合 -M-OR + OH-M-=-M-O-M- +ROH
4. 溶胶-凝胶法应用
1) 粉体材料 2) 块体或多孔材料 3) 纤维材料 4) 薄膜及涂层材料 5) 气凝胶
以制备陶瓷粉体为例
钛酸钡(BaTiO3)具有良好的介电性,是电子陶瓷 领域应用最广的材料之一。传统的BaTiO3制备方 法是固相合成,这种方法生成的粉末颗粒粗且硬, 不能满足高科技应用的要求。现代科技要求陶瓷 粉体具有高纯、超细、粒径分布窄等特性,纳米 材料与粗晶材料相比在物理和机械性能方面有极 大的差别。由于颗粒尺寸减小引起材料物理性能 的变化主要表现在:熔点降低,烧结温度降低、 荧光谱峰向低波长移动、铁电和铁磁性能消失、 电导增强等。溶液化学法是制备超细粉体的一种 重要方法,其中以溶胶-凝胶法最为常用。