热力学第二定律(8)—习题
等压,dG=-SdT
无法直接求ΔG
LOGO
ΔG =
G=H-TS
ΔG=ΔH-Δ(TS)=ΔH -(T2S2 –T1S1) S373.15K S273.15K 由289K等压变温到273.15K ΔS’= nCp,mln(273.15/289)
S273.15 –S289= nCp,mln(273.15/289)
ΔG 5
G1 Vl dp
p
pl*
ΔG 1
G5 * Vs dp
ps
p
268K,p*水 H2O(l),1mol ΔG2=0
ΔG 2
ΔG 3
268K,p*冰 H2O(s),1mol
ΔG4
ΔG4=0
268K,p*水 H2O(g),1mol
268K,p*冰 H2O(g),1mol
ΔG3= n R T ln (p*冰/p*水)
= 1×8.314×268 ln (401/ p*水) = - 108.13 J p*水 = 420.9Pa
LOGO
P64-练习题3 4 mol理想气体从300K, pө 下等压加热
到600K,求此过程的ΔU,ΔH,ΔS,ΔA,ΔG。已知
此理想气体的Smө (300K)=150.0J K-1 mol-1 , Cp,m=
H H1 H2 H3
nCp,m (l )(T2 T1 ) nHm nCp,m (s)(T1 T2 ) 5820.5 J
ΔG=ΔH-TΔS= - 108.13 J
LOGO
(2) 求过冷水在-5°C时的蒸气压
268K,pθ H2O(l),1mol ΔG 268K,pθ H2O(s),1mol
LOGO
P63-1(3)
(3) 298K时,将1mol NH3(视为理想气体)从压力为
pӨ、含NH3 10.00%(摩尔分数)的混合气体中分离成
压力为pӨ的纯NH3(g)过程。 解: 分离是混合的逆过程
mixG RT nB ln xB
分离氨气的G RT (nNH3 ln xNH3 )
ΔG 4 ΔG 3
G5 * Vs dp
ps
p
ΔG4=0
270.2K,p*水 H2O(g),1mol
270.2K,p*冰 H2O(g),1mol
LOGO
ΔG=ΔG1+ΔG2+ΔG3+ΔG4+ΔG5
G1 Vl dp
P
pl*
G5 * Vs dp
LOGO
第二章
热力学第二定律 习题课(2) 主讲:刘辉
练习: P63-64 1、2、4 练习题:P64-65 3、5、6、8 、9、10 习题课上准备讲: P64 练习 3,
练习5,
P64 练习题4
LOGO
P63-1(3)
(3) 298K时,将1mol NH3(视为理想气体)从压力为
RT (1 ln 0.1)
5.70 kJ
LOGO
p63-2. 苯在正常沸点353K时的
H 30.75kJ mol
g l
1
,今将353K、100kPa的
1mol的液态苯向真空等温汽化为同温、同压下的苯蒸
气(视为理想气体)。(1)求此过程的Q、W、ΔU、 ΔH、 ΔS、 ΔA 和 ΔG。(2)应用有关原理判断此过程 是否为不可逆过程。 353K, 苯 (l) pθ ,1mol 向真空蒸发 353K, 苯(g) pθ ,1mol
Δ S1 ΔH1
ΔS3 ΔS2 ΔH2
ΔH3
273K,pθ H2O(l),1mol
273K,pθ H2O(s),1mol
ΔG=ΔH-TΔS ΔS=ΔS1+ΔS2+ΔS3
ΔH=ΔH1+ΔH2+ΔH3
LOGO
268K,pθ H2O(l),1mol
Δ S1 ΔH1
LOGO
353K, 苯 (l) pθ ,1mol
1向真空蒸发 353K, 苯(g) pθ ,1mol
W1 0
2等温等压可逆蒸发
Q2 H2 nlg H 30.75kJ
W2 p(Vg Vl ) pVg nRT
U2 Q2 W2
ps
P
ΔG1+ΔG5≈0 ΔG≈ΔG3=nRTln(p2/p1)
ΔG2=ΔG4=0
= 1×8.314×270.15ln(0.4753/0.4931)= -82.58 J ΔGT,p<0,所以该过程为自发过程 又因W’=0,ΔGT,p< W’,所以该过程为不可逆过程
等温等压不可逆相变 268K,pθ H2O(l),1mol 268K,pθ 等压变 温过程
ΔG
ΔG1
H2O(s),1mol
dG SdT
ΔG3
273K,pθ H2O(l),1mol ΔG2
273K,pθ H2O(s),1mol
LOGO
P64-5
等温等压不可逆相变 ΔS Δ H 268K,pθ 268K,pθ H2O(l),1mol H2O(s),1mol ΔG
ΔS ΔH ΔG
268K,pθ H2O(s),1mol
Δ S3 ΔH3
273K,pθ H2O(l),1mol
ΔS2 ΔH2
273K,pθ H2O(s),1mol
S S1 S2 S3
T2 nH m T1 nC p ,m (l ) ln nC p ,m ( s) ln 21.3J / K T1 T2 T2
解: (1)依Dalton分压定律 p乙醚=n乙醚RT/V总= 25.6 kpa (2)混合气体中N2的pVT没有变化,ΔH,ΔS,ΔG均为零。
乙醚
氮 气 氮气+乙醚气
LOGO
(3) 乙醚发生的是相变过程 乙醚(l),pθ 0.1mol ,35℃ ΔH1 可逆相变 乙醚(g),pθ 0.1mol ,35℃ 乙醚(g), p乙醚= 25.6kPa 0.1mol ,35℃ ΔH2 等温变压
ΔH
ΔH= ΔH1 + ΔH2= nΔlgHm+0= 2.51kJ ΔS= ΔS1 + ΔS2= nΔlgHm/T+nRln pθ /p乙醚= 9.29J/K ΔG= ΔG1 + ΔG2= 0+nRTln p乙醚 /p θ = 9.29J/K
LOGO
P64-5 某一单位化学反应在等温(298.15K)、等压(pө)下直接进 行,放热40kJ,若放在可逆电池中进行则吸热4kJ。(1)计算该 反应的ΔrSm;(2)计算直接反应以及在可逆电池中反应的熵产生 ΔiS ;(3)计算反应的ΔrHm;(4)计算系统对外可能作的最大电功。
解:该相变是一个等温等压下的不可逆相变过程。 270.2K,pθ 270.2K,pθ H2O(l),1mol ΔG H2O(s),1mol
pl* p
G1 Vl dp
ΔG 1
ΔG 5
270.2K,p*水 H2O(l),1mol ΔG2=0
ΔG 2
270.2K,p*冰 H2O(s),1mol
30.00 J K-1 mol-1 解:
300K,pθ 理气,4mol 等压变温 600K,pθ 理气,4mol
U nCVm (T2 T1 ) n(Cpm R)(T2 T1 ) 26.02kJ
H nCpm (T2 T1 ) 36.0kJ T2 S nC pm ln 83.18 J K 1 T1
LOGO
p64-3. 计算1mol O2 (视为理想气体)在pθ下,从 273.15K加热到373.15K的Q、W、ΔU、ΔS、ΔG。已 知 Cp,m(O2) = 29.36 J K-1 mol-1,Sm(O2,289K) = 205.03 J K-1 mol-1。
LOGO
P64-5 已知水在0℃、100kPa下的 ls Hm 6.009 kJ· mol-1; 水和冰的平均热容分别为75.3 和37.6 J· K-1· mol-1;冰在 -5℃时的蒸气压为401Pa。试计算: (1) H2O(l -5℃,100kPa)→H2O(s,-5℃,100kPa)的ΔG; (2) 过冷水在-5℃时的蒸气压。
p64-4 将装有0.1mol乙醚液体的微小玻璃泡放入35℃、 pθ、 10dm3 的恒温瓶中,其中已充满 N2(g) ,将小玻璃 泡打碎后,乙醚全部气化,形成的混合气体可视为理 想气体。已知乙醚在 101325pa 时的沸点为 35℃ ,其 ΔlgHm =25.10 kJ· mol-1 。计算:(1) 混合气体中乙醚 的分压; (2) 氮气的ΔH,ΔS,ΔG; (3) 乙醚的ΔH, ΔS,ΔG。
pӨ、含NH3 10.00%(摩尔分数)的混合气体中分离成
压力为pӨ的纯NH3(g)过程,求ΔG。 解: 理想气体 1mol NH3,0.1pӨ ΔG=nRTln(p2/p1) =1×8.314×298.15×ln(pӨ/0.1pӨ) 等温过程 1mol NH3,pӨ
= 5.70 kJ
解: 273.15K, O2 (g) pθ ,1mol 等压变温
373.15K, O2 (g) pθ ,1mol
Q=ΔH=nCp,m(T2- T1)=2.936 kJ ΔU=nCv,m(T2- T1)=2.10 kJ
W=ΔU- Q= -836J
ΔS= nCp,mln(T2/T1)=9.16 J K-1
G1 G2 0
W1 0
Q1 U1 W1 U1
LOGO
353K, 苯 (l) pθ ,1mol
1向真空蒸发 353K, 苯(g) pθ ,1mol
(2)判断过程是否可逆,需要求熵产生 ΔS=87.11 J· K-1 ΔeS=Q1/T=27.82×103/353=78.81 J· K-1 ΔiS= ΔS-ΔeS= 8.3 J· K-1 >0 过程是为不可逆过程