第37卷第7期2009年7月同济大学学报(自然科学版)JO URNAL OF TON GJI UNIVERSITY(NATURAL SCIEN CE)Vol.37No .7 Jul.2009文章编号:0253-374X(2009)07-0914-05DO I :10.3969/j.issn.0253-374x.2009.07.013收稿日期:2008-06-23基金项目:教育部高等学校博士学科点专项科研基金资助项目(200802471003)作者简介:王建西(1979)),男,博士生,主要研究方向为钢轨伤损管理.E -m ail:qianxi-2008@许玉德(1965)),男,教授,博士生导师,工学博士,主要研究方向为轨道管理、检测数据分析及钢轨打磨技术.E -mail:xuyude2000@gm 影响钢轨疲劳裂纹萌生寿命的主要因素分析王建西1,许玉德1,王志臣2(1.同济大学道路与交通工程教育部重点实验室,上海201804; 2.石家庄铁道学院,河北石家庄050043)摘要:建立了钢轨3维弹塑性有限元计算模型,分析了接触斑内应力-应变场特点.分析结果表明,在接触斑内钢轨处于三向压缩应力状态,有较大的静水压力;认为静水压力影响滚动接触疲劳裂纹萌生寿命.以临界平面法为基础,提出了考虑静水压力影响的滚动接触疲劳裂纹萌生寿命预测模型,分析了轮载和摩擦系数对疲劳裂纹萌生的影响.结合具体算例分析表明:随着静水压力增大,静水压力对滚动接触疲劳裂纹影响在增大;随着轮载和摩擦系数增加,滚动接触疲劳裂纹萌生寿命迅速减少.关键词:钢轨;滚动接触疲劳;裂纹萌生;静水压力;临界平面中图分类号:U 213.4文献标识码:AAnalysis of Major Influencing Factors ofRolling Contact Fatigue Crack Initiation Life ofRailsWANG Jianx i 1,XU Yude 1,WANG Zhichen2(1.Key La boratory of Roa d and Tra ffic Engineering of the Ministry of E duca tion,Tongji University,Shangha i 201804,C hina;2.Shijia zhuang Ra ilway Institute ,Shijia zhua ng 050043,C hina )Abstract :I n order to analyze the stress -strain field c hara cteristics of rails,a three -dimensional elastic -plastic rail m odel is established by finite element m ethod.The results show that the stress -strain field of rail at the contact patch is in a three -compression -stress state,with much greater hydrostatic stress.Rail rolling contact fatigue (RCF)crack initiation life is very sensitive to hydrostatic stress.Based on the critical plane a pproach,a new prediction model is established by taking into the consideration the effects of hydrostatic stress on the rolling contact fatigue crac k initiation life.An analysis is made of the effects of wheel load and fric t ion coefficient on the basis of the m odel.U 71Mn rail steelis investigated in detail to validate the proposed approac h.The results show that,as the hydrostatic stress increa ses,the effects of hydrostatic stress on the rolling contact fatigue c rack initiation life become grea ter and as the wheel load and the friction c oefficient inc rease,fatigue life to crac k initiation decrea ses significantly.Key word s :rail;rolling c ontact fatigue;crac k initiation;hydrostatic stress;critical plane列车牵引、制动和运行都要靠轮轨滚动接触作用来实现.而轮轨接触斑面积只有100多mm 2.这么小接触斑上不仅承受着数十吨竖向载荷,而且由于轮轨接触面之间存在相对滑动和转动,使钢轨又承受了纵向力和横向力作用.在这种复杂的受力环境中,钢轨产生了各种各样的伤损,如磨损、剥离掉块、压溃和断轨.断轨是这些伤损中最严重的情况.引起断轨和剥离掉块的重要原因是钢轨萌生滚动接触疲劳裂纹.在高速铁路发达的欧洲,每年由于滚动接触疲劳裂纹造成的断轨事故达几百次[1].在准高速线路广深线上,截至2003年7月已检查发现有近27%线路出现了滚动接触疲劳裂纹[2].在提速重载线路津浦线,提速后滚动接触疲劳伤损大幅度增加[3].钢轨滚动接触疲劳伤损不仅直接影响铁路运营成本,而且还影响列车运营安全.随着铁路向高速、重载和高密度方向发展,钢轨滚动接触疲劳越来越成为铁路线路养护维修中一个突出问题.因此,很多国家都进行了比较深入的研究.Kapoor 根据试验观察结果提出了钢轨由于棘轮效应萌生裂纹的模型[4].Smith 分析了钢轨接触疲劳伤损现象,指出了滚动接触疲第7期王建西,等:影响钢轨疲劳裂纹萌生寿命的主要因素分析劳进一步研究方向[5].Ringsberg 利用Coffin -Manson 公式和SWT 公式进行了疲劳裂纹的预测分析[1].金学松等人对轮轨滚动接触疲劳问题进行了定性分析[6].影响滚动接触疲劳裂纹萌生寿命的主要因素是轮载和摩擦系数.分析这些主要因素对滚动接触疲劳裂纹萌生寿命影响规律,将有助于研究剥离掉块和断轨产生原因,有助于确定预防性钢轨打磨的打磨参数.同时,在静水压力作用下微裂纹会闭合,提高钢轨的抗疲劳性能.而静水压力对滚动接触疲劳裂纹萌生的影响还少见有文献分析过.本文通过对钢轨轨头应力应变分析,提出了考虑静水压力影响的滚动接触疲劳裂纹萌生寿命预测模型,分析了影响滚动接触疲劳裂纹萌生寿命的主要因素,为制定减缓滚动接触疲劳的养护维修合理方法提供理论上的支持.滚动接触疲劳裂纹发展过程可以分为裂纹萌生阶段和扩展阶段.根据试验和工程实际,把钢轨中出现0.5mm 裂纹时的疲劳寿命视为裂纹萌生寿命.1 钢轨应力应变分析模型轮轨接触表面接触压力和接触斑的大小按H er tz 理论计算,忽略了轮轨接触时塑性变形对接触压力和接触斑的影响.轮轨接触面之间存在相对滑动和转动使钢轨又承受了纵向力作用.假定轮轨接触斑处于全滑动状态,根据库仑摩擦定理:纵向力和法向接触压力成正比,这样纵向力分布可以通过法向接触压力计算.为了反映群载作用下轮载之间的相互影响,先建立多跨连续梁模型,计算出前后两辆车相邻的2个转向架中最不利轮位处的位移u 和转角U ;然后,利用子模型技术取最不利轮位所处的一跨钢轨建立子模型,把在连续梁模型中计算的位移和转角加到子模型两端面上,进行弹塑性状态下钢轨应力)应变计算.图1给出了轮轨接触子模型有限元网格.在轨枕支承点用弹簧模拟垫板、道床和路基的弹性支承.由于塑性变形主要产生在接触斑附近,为了减小应力集中的影响和提高计算效率和精度,将接触斑附近一定范围的轨头进行细划分网格.在该模型中采用非线性各向同性随动硬化模型来描述塑性状态下应力)应变的关系[7].图1 轮轨接触子模型有限元网格Fig.1 Finite element mesh fo r submodel2 滚动接触疲劳裂纹萌生寿命预测模型2.1 临界平面法裂纹萌生寿命预测方法人们提出了很多不同的裂纹萌生寿命预测方法.其中,临界平面法是基于裂纹产生和扩展的物理观察基础上的,有很大优越性.但对于临界平面法中选何种物理量作为疲劳参量人们认识并不一致.Jang 等提出了基于应变能的疲劳参数F p[8]F p =òR m ax ó$E /2+J $S$C (1)式中:òó为M acCauley 括号,òRmax ó=0.5(R max +R max );R max 为裂纹面上的最大正应力;$E 为裂纹面上正应变幅值;$S 和$C 分别为裂纹面上剪应力幅值和剪应变幅值;J 为材料参数.把F p max 值所在的平面定义为临界面,也就是临界平面,是疲劳裂纹萌生和扩展平面.这种方法考虑了平均应力对裂纹萌生寿命影响,把裂纹产生(临界平面上剪应力(应变))和扩展(正应力(应变))的物理量通过能量的方式有机地联系起来.文献[9]指出,尽管观察到裂纹在最大拉应力面上出现,但张拉型裂纹萌生寿命公式预测结果与试验相差比较大,剪切型裂纹萌生公式预测结果与试验有很好的一致性.同时,通过应力分析表明,接触斑内多处于受压状态,裂纹萌生更多地是由于剪应力和剪应变所引起的.因此,接触疲劳裂纹萌生寿命预测公式为F p m ax =(S c f )2G (2N f )2b +S c f C c f (2N f )b +c(2)式中:S c f 为疲劳强度系数;C c f 为疲劳延性系数;b 为疲劳强度指数;c 为疲劳延性指数;G 为剪切模量;N f 为滚动接触疲劳裂纹萌生寿命,即轮载作用次数.2.2 静水压力影响系数915同济大学学报(自然科学版)第37卷拉应力会促使晶间变形、加速晶界破坏;而压应力能阻止或减小晶间变形,随着静水压力的增大,晶间变形越困难,从而提高了金属的塑性[10].在压应力作用下微裂纹闭合,而拉应力作用下会促使微裂纹扩展.文献[11]指出,在一定外力作用下微裂纹的闭合又能导致材料刚度的部分恢复,也就是单元体的减小有利于单元体强度的提高.在轮轨滚动接触中,接触斑内静水压力很大,提高了钢轨的塑性,提高了抗疲劳能力.因此,在滚动接触疲劳裂纹萌生寿命中应考虑静水压力对滚动接触疲劳裂纹萌生寿命影响.式(2)是基于应变能疲劳伤损公式.现代伤损力学研究也表明应变能密度释放率是控制伤损现象的主要变量.因此,从应变能角度分析静水压力对滚动接触疲劳裂纹萌生寿命的影响.物体内弹性总比能为W =Q R ijd E ij=Qs ijd e ij+D ij :D ij QR h d E h =121+C E s ij :s ij +3(1-2C )E R h 2(3)式中:R ij ,E ij 分别为应力分量和应变分量;s ij ,e ij 分别为应力偏张量分量和应变偏张量分量;R h ,E h 分别为静水压力和体积应变;D ij 为微分算子;C 为泊松比;E 为弹性模量.vonMises 当量应力R eq 为R e q =32s ij :s ij 1/2(4)则弹性总比能为W =(1+C )R 2eq 3E 1+9(1-2C )2(1+C )R hR eq2(5)由上面分析知,静水压力越大,单元体体积越小,晶间变形越困难,从而提高了金属塑性,这样相当于静水压力做负功,使单元体能量减少;反之亦然.这样把弹性总比能修改为W =(1+C )R2e q3E1+9(1-2C )2(1+C )R3h R h R 2e q(6)定义静水压力影响系数U h 为U h =1+9(1-2C )2(1+C )R 3hR h R 2e q-1/2(7)由上面分析可知,静水压力主要影响塑性部分,则含静水压力影响的滚动接触疲劳裂纹萌生公式为F p m ax =(S c f )2G(2N f )2b +U h S c f C c f (2N f )b +c(8)3 结果与讨论以U71Mn 60kg #m -1钢轨和LM 型车轮踏面为例,分析滚动接触疲劳裂纹萌生寿命影响因素.U 71M n 钢材料参数采用文献[12]试验数据,材料疲劳参数根据文献[1].表1为U 71M n 钢材料性能,R 0.2为屈服强度.表1 U71Mn 钢材料性能Tab .1 Mechanical p roperties fo r rail steel U71Mn参数E /GPa C R 0.2/M Pa S c f /MPa C c f /%bc数值2150.29484.546815.45-0.089-0.5593.1 静水压力影响在接触压力作用下,接触斑内钢轨承受很大的压应力.图2为(在轮载为78.4kN,摩擦系数为0.3,列车行驶方向沿x 轴正向)纵断面最大主应力的应力图.从图中可以看出,在接触斑下方都是处于三向压缩的应力状态,只有在接触斑的后缘有部分拉应力区,但由于已经不在接触斑内,应力值比较小.在三向压缩的应力状态下,静水压力使微裂纹闭合,提高了材料的塑性,因此在滚动接触疲劳裂纹萌生寿命计算中应考虑静水压力的影响.图2 最大主应力图Fig.2 Maj or principal stress图3为静水压力对滚动接触疲劳裂纹萌生寿命的影响.从图3a 可以看出,随着轮载增加,静水压力成增加的趋势,但不是单调递增;图3b 是考虑静水压力影响后滚动接触疲劳裂纹萌生寿命与没有考虑静水压力影响的滚动接触疲劳裂纹萌生寿命两者的比较.图中,P 0为最大接触应力;L 为摩擦系数;N f 和N c f 分别为考虑静水压力和没有考虑静水压力影响后滚动接触疲劳裂纹萌生寿命.从整体来看,随着轮载值的增加,静水压力对滚动接触疲劳裂纹萌生寿命影响在增大.对比图3中a,b,可以看出滚动接触疲劳裂纹萌生寿命的改变量变化趋势与静水压力的变化趋势一致,即静水压力越大,对滚动接触疲劳裂纹萌生寿命的影响越大,滚动接触疲劳裂纹萌生寿命改变量就越大.916第7期王建西,等:影响钢轨疲劳裂纹萌生寿命的主要因素分析图3 静水压力对滚动接触疲劳裂纹萌生寿命的影响Fig.3 Effect of the hyd ro static stress onthe crack initiation life3.2 轮载影响重载是货运的发展趋势.但随着货运向重载方向发展也使钢轨伤损大量增加[3].图4为随着轮载变化滚动接触疲劳裂纹萌生寿命变化情况.随着轮载增加,滚动接触疲劳裂纹萌生寿命在减少;并且在轮载比较大时,滚动接触疲劳裂纹萌生寿命减少程度快;在轮载比较小时,滚动接触疲劳裂纹萌生寿命随轮载增加减少的程度慢,近似有条渐近线.也就是在轮载值比较大时,轮载增加对滚动接触疲劳裂纹萌生寿命影响大;在轮载值比较小时候,轮载增加对滚动接触疲劳裂纹萌生寿命的减少影响相对较小.这也是重载运输中疲劳伤损比较严重的原因之一.因此,在静轮载比较大的线路中,更要提高线路平顺性,减少由于线路不平顺造成过大动载而加速钢轨的伤损发展.图4 轮载对滚动接触疲劳裂纹萌生寿命影响Fig.4 Effect o f the wheel lo ad o n thecrack initiation life3.3 摩擦系数影响列车的行驶离不开纵向力,但纵向力又是造成钢轨伤损的重要原因.图5为滚动接触疲劳裂纹萌生寿命随摩擦系数的变化情况.从图中看,随着摩擦系数增加,滚动接触疲劳裂纹萌生寿命变化成先缓慢后剧烈,转折点大约在摩擦系数为0.1处.即在摩擦系数L >0.1时,随着摩擦系数增大,滚动接触疲劳裂纹萌生寿命减少的速率大,图中表现为滚动接触疲劳裂纹萌生寿命变化得比较陡;在摩擦系数L <0.1时,随摩擦系数增大,滚动接触疲劳裂纹萌生寿命减少的速率要小,图中表现为滚动接触疲劳裂纹萌生寿命变化得比较缓.而且这种变化趋势随着轮载值增加,发生了较大变化.当轮载值比较大时,随着摩擦系数增加,滚动接触疲劳裂纹萌生寿命减少的速率基本不变,且比较大.图5 摩擦系数对滚动接触疲劳裂纹萌生寿命影响Fig.5 Effect o f the frictio n co efficient onthe crack initiation life4 结论根据钢轨轨头应力应变情况,建立了考虑静水压力影响的滚动接触疲劳裂纹萌生寿命预测模型,分析了影响滚动接触疲劳裂纹萌生寿命的因素,得出以下结论:(1)在接触斑内,钢轨处于三向压缩状态,有比较大的静水压力;在接触斑后缘出现了比较小的拉应力区,但应力值较小.(2)静水压力对滚动接触疲劳裂纹萌生寿命影响比较大,应该在滚动接触疲劳分析中考虑静水压力对滚动接触疲劳裂纹萌生寿命影响.随着静水压力增大,静水压力对滚动接触疲劳裂纹萌生寿命影响也在增大.(3)随着轮载增加,滚动接触疲劳裂纹萌生寿命在减少.在轮载比较大时,随轮载增加滚动接触疲劳裂纹萌生寿命减少速率大;在轮载比较小时,随轮载增加,滚动接触疲劳裂纹萌生寿命减少速率比917同济大学学报(自然科学版)第37卷较慢.(4)随着摩擦系数增大,滚动接触疲劳裂纹萌生寿命在减少,且随着摩擦系数增大,滚动接触疲劳裂纹萌生寿命减少的速率也在增大.参考文献:[1]Ringsb erg J W,Loo M orrey M,Josefson B L,et al.Predictionof fatigu e crack initiation for rollin g contact fatigue[J].International Journal of Fatigu e,2000,22(3):205.[2]刘学文,邹定强,邢丽贤,等.钢轨踏面斜裂纹伤损原因及对策的研究[J].中国铁道科学,2004,25(2):82.LIU Xuew en,ZOU Dingqiang,XING Lixian,et al.Cau se ofrail tread oblique crack and countermeasu re[J].Ch ina Railw ayS cien ce,2004,25(2):82.[3]王志平.重载快速大运量区段P60钢轨鱼鳞伤和剥离掉块的研究[J].华东交通大学学报,2005,22(4):1.W ANG Zhiping.Res earch of the60kg/m rail corner finecracks and shelling defects on h eavy-haul and fast s peedrailw ay[J].J ou rnal of Eas t China Jiaotong University,2005,22(4):1.[4]Kapoor K.A re-evaluation of the life to ru ptu re of ductilem etals by cyclic plastic s train[J].Fatigu e&Fracture ofEn gineering M aterials&Structur es,1994,17(2):201.[5]史密斯.钢轨滚动接触疲劳的进一步研究[J].中国铁道科学,2002,23(3):6.S mith R A.Rolling contact fatigue of rails:What remain s to bedone?[J].China Railw ay Science,2002,23(3):6.[6]金学松,张继业,温泽峰,等.轮轨滚动接触疲劳现象分析[J].机械强度,2002,24(2):250.J IN Xues on g,ZH ANG Jiye,W EN Zefeng,et al.Overview ofph enomena of rolling contact fatigue of w heel/rail[J].J ou rnalof M ech anical Strength,2002,24(2):250.[7]Dunn e F,Petrinic N.In tr odu ction to com putational plas ticity[M].New York:Oxford University Pres s,2005.[8]J IANG Yanyao,S ehitoglu H.A model for rolling contactfailure[J].Wear,1999,224(1):38.[9]JIANG Yanyao.A fatigue criterion for gengeral m ultiaxialloading[J].Fatigue&Fracture of Engineering M aterials&Stru ctures,2000,23(1):19.[10]徐洲,姚寿山.材料加工原理[M].北京:科学出版社,2003.XU Zh ou,YAO S houshan.Process theory of materials[M].Beijing:Science Press,2003.[11]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814.LI Xibing,ZU O Yujun,M A Chun de.Failure criterion of strainenergy density and catastrophe theory analysis of rocksu bjected to static-dynam ic coupling loading[J].ChineseJ ou rnal of Rock M echanics and Engin eering,2005,24(16):2814.[12]KANG Guozh eng,GAO Qing.Un iaxial and non-proportion allymu ltiaxial ratchettin g of U71M n rail steel:exp eriments an dsimulation s[J].M echanics of M aterials,2002,34(12):809.#下期文章摘要预报#水泥改性乳化沥青混凝土力学性能与微观机理杜少文,王振军研究了不同水泥用量对乳化沥青混凝土抗压强度和抗压回弹模量.抗折强度和抗折回弹模量等力学参数的影响.使用红外光谱、X衍射和扫描电子显微镜研究了水泥乳化沥青胶浆以及混凝土界面的微观结构特征.结果表明,加入水泥后,乳化混凝土力学参数有较大提高,并随着水泥用量增加而增大;水泥与乳化沥青之间没有发生明显化学反应;水泥与乳化沥青中的水相发生了水化反应,水化产物与水泥在水中的水化产物相同;呈网状的水化产物与沥青通过物理复合形成的水泥沥青胶浆,增大了沥青胶浆的黏度,改善了胶浆与集料界面黏结,提高了混凝土的力学性能.918。