当前位置:文档之家› 信号采样及零阶保持器

信号采样及零阶保持器

8-2 信号的采样和复现的数学描述
一、 采样过程
所谓理想采样,就是把一个连续信号)(t e ,按一定的时间间隔逐点地取其瞬时值,从而得
到一串脉冲序列信号)(t e *。

可见在采样瞬时,)(t e *
的脉冲强度等于相应瞬时)(t e 的幅值,即
)0(T e ,)1(T e ,)2(T e ,…)(nT e ,…如图8-8所示。

因此,理想采样过程可以看成是一个幅值调制过程,
如图8-9所示。

采样器好比是一个幅值调制器,理想脉冲序列)(t T δ作为幅值调制器的载波信号,)(t T δ的数学表达式为
∑∞

==
-n nT)-(t )(δδt T
(8-1)
其中=n 0,±1,±2,…
)(t e 调幅后得到的信号,即采样信号)(t e *为
∑∞
-∞=*
-==n T nT t t e t t e t e )()()()()(δδ
(8-2)
通常在控制系统中,假设当0<t 时,信号0)(=t e ,因此
+-+-+=*)2()2()()()()0()(T t T e T t T e t e t e δδδ
+-+)()(nT t nT e δ
(8-3)

∑∞
=*
-=0
)()()(n nT t nT e t e δ
(8-4)
式(8-4)为一无穷项和式,每一项中的)(nT t -δ表示脉冲出现的时刻;而)(nT e 代表这一时刻的脉冲强度。

式(8-2)或(8-4)表示了采样前的连续信号与采样后的离散信号之间的关系。

然而,一个值得提出的问
题是:采样后的断续信号能否全面而真实地代表原来的连续信号呢?或者说它是否包含了原连续信号的全
部信息呢?因为从采样(离散化)过程来看,“采样”是有可能会损失信息的。

下面我们将从频率域着手研究这个问题。

二、 采样信号的频谱
假设连续信号)(t e 的富氏变换式为)(ωj E ,采样后信号*
()e t 的富氏变换式用*
()E j ω表示,下面我
们来看)(ωj E *
的具体表达式。

由于理想脉冲序列)(t T δ是一个周期函数,其周期为T ,因此它可以展开成指数形式的富氏级数,即
∑∞
-∞
==
n t
jn T s e
T
t ωδ1
)( (8-5)
其中T s πω2=为采样角频率。

将式(8-5)的结果代入(8-2)式得
∑∞
-∞
=*
==n t jn T s e t e T t t e t e ωδ)(1)()()(
(8-6)
根据复位移定理;若[()]()F e t E j ω=,则
[()]()at F e t e E j a ω
±=
因此,式(8-6)的富氏变换式为
∑∞
-∞
=*
*
-==n s jn j E T j E t e F )(1)()]([ωωω (8-7)
假定连续信号)(t e 的频谱如图8-10(a )所示,则根据式(8-7)可得采样(离散)信号)(t e *
的频谱如图8-10(b )所示。

由图8-10,可得到如下结论:
(1)0=n 的项为
)(1
ωj E T
,通常称为基本频谱。

它正比于原连续信号)(t e 的频谱。

(2) 同时派生出以s ω为周期的,无限多个高频频谱分量
)(1
s jn j E T
ωω-,其中=n ±1, ±2,…。

h
以上表明了连续信号与它所对应的离散信号在频谱上的差别。

从富氏变换及其反变换的有关定理可
知,在一定条件下,原函数)(t e 与其富氏变换式)(ωj E 是一一对应的,亦即由富氏变换式)(ωj E 可以唯一地还原成原函数)(t e 。

可以设想,如果让采样信号通过一个图8-11所示的理想滤波器,将所有派生出来的高频分量全部滤掉,而同时保留其基本频谱信号。

那么经过这样处理后的信号,只要将其幅值放大T 倍,就能完全重现原信号。

由图8-10不难看出,要想完全滤掉高频分量,筛选出基本频谱,从而根据采样信号)(t e *
来复现采
样前的连续信号)(t e ,采样频率s ω必须大于或等于连续信号)(t e 频谱中最高频率max ω的两倍,即
max 2ωω≥s
(8-8)
这就是有名的香农(Shannon)采样定理。

这一定理告诉我们,只要采样频率足够高,我们完全不必担心采样
过程会损失任何信息。

由图8-10也可看出,若采样频率不够高,即max 2ωω<s 时,则将会出现如图8-12所示的频谱重
叠现象。

很明显,这时,我们就无法再把基本频谱和派生高频频谱分开;从而,也就无法重现原信号,或者说,采样过程将损失信息。

另外,需要指出的是,如图8-11所示的理想滤波器,实际上是不存在的。

因此在工程上,通常采用性能与理想滤波器相近似的低通滤波器,其中最常用的低通滤波器就是零阶保持器。

三、 零阶保持器的数学模型
零阶保持器的输入、输出关系如图8-13所示。

因此,零阶保持器的作用是在信号传递过程中,把第nT 时刻的采样信号值一直保持到第T n )1(+时刻的前一瞬时,把第T n )1(+时刻的采样值一直保持到
T n )2(+时刻,依次类推,从而把一个脉冲序列)(t e *变成一个连续的阶梯信号)(t e h 。

因为在每一个采
样区间内)(t e h 的值均为常值,亦即其一阶导数为零,故称为零阶保持器,可用“ZOH ”来表示。

如果把阶梯信号)(t e h 的中点连起来,则可以得到与)(t e 形状一致而时间上迟后半个采样周期)2(T
的响应曲线)2
(T
t e -,如图8-13中的虚线所示。

由此也可初步估计到零阶保持器对于系统动态性能的影响。

为了求取零阶保持器(ZOH)的数字模型,可以从图8-13中任取一个采样周期来进行分析。

零阶保持
器的输入是脉冲函数,为了叙述方便,假设脉冲强度为1,即为单位脉冲函数,于是零阶保持器的输出就是单位脉冲过渡函数,该单位脉冲过渡函数的拉氏变换式,即为零阶保持器的传递函数。

零阶保持器的单位脉冲过渡函数的图形是高度为1,宽度为T 的矩形波,如图8-14(a )所示。

为了求
其拉氏变换式,可以把它分解成两个阶跃函数之和,如图8-14(b )所示。

于是,脉冲过渡函数可表示为
)(1)(1)(T t t t y --=
相应的拉氏变换式为
s
e e s s s Y Ts
Ts ---=-=111)(
这就是零阶保持器的传递函数,即
s
e s G Ts h --=1)(
(8-9)
而零阶保持器的频率特性为
22
)
2sin(1)(T T T T j e j G T j h ωωωωωω-∠=-=-
其频率特性曲线如图8-15所示。

与理想滤波器图8-11相比较,可见,两者都能起低通滤波作用。

不过
零阶保持器的频率特性不很理想。

信号经过零阶保持器以后,其高频分量不能完全滤掉。

此外,零阶保持器具有2T ω的相角迟后。

因此,零阶保持器的引入将会使系统的稳定性变差。

零阶保持器的一个优点是,可以近似地用无源网络来实现。


果将零阶保持器传递函数中的Ts
e 项展开成幂级数,并取前两项,则有
1
11111111)(+=⎪
⎭⎫ ⎝⎛+-≈⎪⎭⎫ ⎝⎛-=-=-Ts T
Ts s e s s e s G Ts Ts h 这是就图8-16所示RC 网络的传递函数。

相关主题