当前位置:
文档之家› (优选)第二讲换流器基本理论及特性方程
(优选)第二讲换流器基本理论及特性方程
阀电压波形(阀V1)
下面进行公式推导
换相过程中的电流( V5 V1 )
在阀V1开通后的等值电路中,
L
di1 dt
L
di5 dt
ea
ec
换相过程中:i1 i ,i5 Id i
临界条件:ii11
0 Id
& &
i5 Id , i5 0,
t t
换相过程中的电流(V5 V1 )
cos(
)
阀电流和交流侧电流
1.假定无换相重叠, 0
阀电流波形是宽度为120°的矩形波,幅值为 Id
阀电流有效值
IV 0
1
2
2
3
Id2
1 3
Id
0.577Id
阀电流和交流侧电流
桥交流侧线电流有效值
I
2 3Id
0.816Id
,( IV 0的
2倍)
对应基波分量有效值
I1
2
3
Id
cosd
得出
i1
i
2E
2L
(cos
cost)
I s2 (cos
cost)
i5 Id i
则
交流系统在换流器交流 端两相短路时,短路电 流强制分量的幅值
Id
2E
2L
cos
cos(
)
换相过程中的电流波形
两相短路电压 换相开始
短路电流直流分量
换相结束
短路电流强制分量
换相重叠角
2-3工作模式下:
arccos cos
2L Id
2E
【结论】
其它参数不变的情况下,
Id、E、 相控的理想空载直流电压( 0 )
直流电压V在d 一周之中由6段相同正弦曲线组成。
假定基准纵轴位于t 30 处,则曲线 eba的纵坐标
可用 2E cos 表示。
则
1
Vd 0
3
6
6
2E cosd
2
Id
sin
3
3
6
Id
3
波形上各点对矩形波中线的角度
阀电流和交流侧电流
2.考虑换相重叠, 0
考虑阀电流上升和下降部分波形的变化
前面已经推出,
导通期的非换相期间 ( + g t 120 + ),
阀电流等于直流电流:
Id
2E
2L
cos
cos(
)
阀电流和交流侧电流
换相期上升段( t + g):
得出
32
Vd0 E 1.35E
整流器的直流电压
• 有相控的理想空载直流电压( 0, 0 )
由于α角的存在,积分上下限值有所不同。
Vd0
1
3
6 6
2E cosd
得出
Vd0
32
E cos
Vd 0
cos
整流器的直流电压
• 有相控、有负载时直流电压( 0, 0 )
在换相期间,m点(共阴极点)的电位处于ec和 ea两
曲线之间的中点上。
直流电压压降,由区域A表示
A
( )
(ea
ea
2
ec
)d
2E cos cos( )
2
直流电压波形局部放大
整流器的直流电压
有相控、有负载时直流电压( 0, 0)
平均电压压降
Vd
3
A
32
2
Ecos
cos(
)
前面推出
Id
2E
2L
cos
cos(
)
故
Vd
3L
Id
3X
换相过程(1)
换相前,阀5、6导通
以
-V5
的V1
换
相
过
程
为
例
换相过程(1)
等值电路
以 -V5 的V1 换 相 过 程 为 例
换相过程(2)
阀5和阀1换相过程
以
-V5
的V1
换
相
过
程
为
例
换相过程(2)
等值电路
以 -V5 的V1 换 相 过 程 为 例
换相过程(3)
换相结束,阀6、1导通
以
-V5
Id
6 fL Id
dxId
整流器的直流电压
有相控、有负载时直流电压( 0, 0)
从而
Vd Vd0 V Vd0 cos dxId
其中,dx 3X , 比换相压降
(又称等值换相电阻,但并不消耗有功功率)
通过公式代换,还可得出
Vd
Vd 0 2
cos
cos(
)
3 2E
2
cos
30°的6脉动换流器所组成
• 绝大多数直流输电工程均采用12脉动换 流器
• 用于直流输电的电力换流器都采用三相 桥式接线
简单系统换流器原理接线图
2.2 6脉动整流器工作原理
三相桥式换流器的原理接线图
换流阀按正常轮流开通的次序编号
晶闸管换流阀的通断条件
• 导通条件
❖换流阀的阳极电位必须高于阴极电位 (即:阀电压必须是正向的) ❖在控制极加上触发所需的脉冲
基本概念
• 触发滞后角
对控制极施加触发脉冲的时刻滞后于自然换相点的相位角
角一般选择为10°~15 °左右:
➢为保证阀正常触发开通,应大于其最小值, 同时在实际运行中需留有调节余地,故应稍大一些
➢为尽可能提高功率因数,不能过大
• 换相角
换相过程所经历的相位角,又称“重叠角”
交流侧电压波形
自然换相点Ci 是阀Vi触发角i 计时的零点(i=1,2,…,6)
(优选)第二讲换流器基本理 论及特性方程
1
2.1 换流器概述
• 换流器功能:
实现交流-直流或直流-交流的变换
• 换流器分类:整流器;逆变器
【按功能】
• 换流器分类:单桥(6脉动);多桥(12
【按结构】
脉动及以上)
换流器概述
• 6脉动换流器:三相桥式换流回路 • 12脉动换流器:由两个交流侧电压相位差
的V1
换
相
过
程
为
例
换相过程(3)
等值电路
以 -V5 的V1 换 相 过 程 为 例
直流电压波形(不考虑换相重叠)
30为例
直 流
端对 中 性 点 直
流电 压 Vd
直流电压波形(考虑换相重叠)
30, 0为例
直 流
端对 中 性 点 直
流电 压 Vd
阀电流和交流电流波形
阀 电 流
交 流 侧 电 流
交流侧电压源表达式
• 以 eca的矢量作为基准
• 交流侧电源相电动势:
E:电源线电动势的有效值
交流侧电压源表达式
• 交流侧电源电动势(线电势)
eca ea ec 2E sin t eab eb ea 2E sin( t 120) ebc ec eb 2E sin( t 120)
• 关断条件
❖阀电流减小到零,且阀电压保持一段时间等于零 或为负,使阀元件内多余载流子消失
6脉动桥式整流电路
理想假定条件
• 三相交流电源对称、正弦,频率恒定 • 交流电网阻抗对称,忽略换流变压器激磁导纳 • 大电感平波电抗器,使换流器直流侧电流为纯
直流 • 阀的特性是理想的 • 桥阀等相位间隔依次轮流触发
is
E
2 L
(cos
cost)
Id
cos cost cos cos( g
)
换相期下降段( 120 + t 120 + + g ) :
ij
Id
Id
cos cos(t 120) cos cos( g )
阀电流和交流侧电流
因此阀电流有效值
1
IV