当前位置:文档之家› 电磁学基础知识

电磁学基础知识


式中,磁通的单位为Wb;时间的单位为S;电动势的单位为V。 若线圈匝数为N匝,每匝线圈内穿过的磁通为φ,则与此线圈相交 链的总磁通称为磁链,用ψ表示,即
(1)
此时线圈的感应电动势为
式(1)不仅表明了感应电动势的大小,而且可以表明其方向。
2、自感L
当闭合线圈通电流,就会产生磁场,那么当电流交变,就会 使磁场交变,从而在线圈自身产生感应电动势,这种现象称为 自感现象,这种电动势称为自感电动势eL。 电流通过线圈时产生的磁链ψ与电流i在大小上成正比,为了 便于分析、计算,引入一个参数L,称为线圈的自感系数,即
3.1 磁场与电磁感应 3.1.1 电磁学的基本物理量
1、磁感应强度B
表示磁场内某点磁场强弱和方向的物理量。
方向:
大小:
与电流的方向之间符合右手螺旋定则。
F B lI
单位: 特斯拉(T),1T = 1Wb/m2 均匀磁场: 各点磁感应强度大小相等,方向 相同的磁场,也称匀强磁场。
磁通 :穿过垂直于B方向的面积S中的磁力线总数。 在均匀磁场中 = B S 或 B= /S
u
i (Ni)
(磁通势)

σ
i,铁心线圈的漏磁电感 Lσ NΦσ 常数 i
dΦ e N 线圈 dt di dΦσ Lσ eσ N dt dt
铁心
2.4 .2 电压电流关系
根据KVL:

i + u –
式中:R是线圈导线的电阻 L 是漏磁电感
u Ri eσ e di Ri Lσ ( e ) dt
第三章 电磁学基础
3.1 磁场与电磁感应
3.2 铁磁性材料 3.3 磁路基本定律 3.4 含有铁心线圈交流电路 3.5 变压器 3.6 点火线圈与汽车传统点火系统的工作过程
第三章 电磁学基础
本章要求:
1)了解磁场的四个基本物理量和电磁感应概 念。 2)了解铁磁性材料特性及其应用。 3)理解磁路欧姆定律和磁路的基尔霍夫定律。 4)了解变压器的基本结构,掌握变压器的基 本工作原理。 5)了解点火线圈与汽车传统点火系统的工作 过程。 6)了解电磁铁的工作特性。
磁性物质由于磁化所产生的磁化磁场不会随着 外磁场的增强而无限的增强。当外磁场增大到一定 外磁场的增强而无限的增强。 程度时,磁性物质的全部磁畴的磁场方向都转向与 外部磁场方向一致,磁化磁场的磁感应强度将趋向 某一定值。如图。 BJ 磁场内磁性物质的磁化磁场 的磁感应强度曲线;
B0 磁场内不存在磁性物质时的 磁感应强度直线; B BJ曲线和B0直线的纵坐标相 加即磁场的 B-H 磁化曲线。
磁路中的 欧姆定律
注:由于磁性材料 是非线性的,磁路欧姆定律多用作定性 分析,不做定量计算。
磁路和电路的比较(一)
Φ
磁动势
磁通
磁压降
磁 路
I N
F IN
Φ
电流
HL
I
电动势
U
电压降
电 路
+
E
_
R
E
I
U
磁路与电路的比较 (二)
磁路
基本定律 磁阻 磁感应 强度
基尔霍夫定律
I
Φ
N
F NI l Φ Rm B Rm S S HL

B和与H的关系
H
3.2.3 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于 外磁场变化的性质。 磁性材料在交变磁场中反复磁化,其B-H关系曲线 是一条回形闭合曲线,称为磁滞回线。 B 剩磁感应强度Br (剩磁) : Br • 当线圈中电流减小到零(H=0) 时,铁心中的磁感应强度。 • O •H 矫顽磁力Hc: H c 使 B = 0 所需的 H 值。 磁性物质不同,其磁滞回线 和磁化曲线也不同。
H

磁场强度H的单位 :安培/米(A/m)
磁场强度的大小取决于电流的大小、载流导体的形状及几 何位置,而与磁介质无关。 H和B同为矢量。H的方向就是该点B的方向。在后面学到 的磁路问题中,常常用到磁场强度这个物理量。
3.1.4 安培环路定律(全电流定律)
H dl I
I1
H
式中: H d l 是磁场强度矢量沿任意闭合 线(常取磁通作为闭合回线)的线积分;

磁滞回线
几种常见磁性物质的磁化曲线
B/T
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 1 2 3 4 5 6 7 8 9 10 103 H/(A/m)
c b
c b
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a H/(A/m) 1.0103
在无分支的均匀磁路(磁路的材料和截面积相同, 各处的磁场强度相等)中,安培环路定律可写成:
NI HL
NI:称为磁动势。一般
用 F 表示。 F=NI
HL:称为磁位差。
线圈 匝数N
I
磁路 长度L
在非均匀磁路(磁路的材料或截面积不同,或磁场 强度不等)中,总磁动势等于各段磁位差之和。
NI HL
2、 磁通
说明: 如果不是均匀磁场,则取B的平均值。 磁感应强度B在数值上可以看成为与磁场方向垂直 的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb)
1Wb =1V· s
3、磁导率μ 磁导率μ来表示物质的导磁性能。μ的单位是H/m(亨/米)。
真空的磁导率为常数,用 0表示,有:
3.3 磁路基本定律
3.3.1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料 做成一定形状的铁心。铁心的磁导率比周围空气或 其它物质的磁导率高的多,磁通的绝大部分经过铁 心形成闭合通路。
If
N S N S
+ –
直流电机的磁路
交流接触器的磁路
i
u1
线圈

铁心
线圈通入电流后, 产生磁通,分主磁 通和漏磁通。

I2
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定:
任意选定一个闭合回线的围绕方向,凡是 电流方向与闭合回线围绕方向之间符合右螺 旋定则的电流作为正、反之为负。 IN 在均匀磁场中 Hl = IN 或 H l 安培环路定律将电流与磁场强度联系起来。
3.1.2 电磁感应
B
b • a • B BJ B0
O
3.2.2 磁饱和性
磁化曲线
H
B-H 磁化曲线的特征: B b B • Oa段:B 与H几乎成正比地增加; a BJ • ab段: B 的增加缓慢下来; b点以后:B增加很少,达到饱和。 B0 有磁性物质存在时,B 与 H不成 O 磁化曲线 H 正比,磁性物质的磁导率不是常 B, 数,随H而变。 有磁性物质存在时,与 I 不成 B 正比。 磁性物质的磁化曲线在磁路计 算上极为重要,其为非线性曲线, O 实际中通过实验得出。
法拉第电磁感应定律和楞次定律分别从大小和方向两方面阐 述了感应电动势与磁通的关系。
为了便于分析、表达感应电动势,通常设定感应电动势与磁通的参 考方向符合右螺旋关系,则电磁感应定律可用下式表达:对于一匝 线圈由电磁感应所产生的感应电动势为: Φ
e(t)
d d ( N) d e N dt dt dt
磁导率远远大于真空磁导率,即 r >> 1 ,可达到 几百到上万。材料如铁、钴、镍及其合金等。
所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ 是个变量,它随磁场的强弱而变化。
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质 磁导率 之比。 B
欧姆定律 电阻

0
电路
I + _E R
电流 强度
基尔霍夫定律
l E I R I J S R S
E I U 0
系 :通过铁心闭合的 主磁通
3.4 交流铁心线圈电 路 3.4 .1 电磁关 i


– + e 磁通。 与i不是线性关系。 u –+ e 漏磁通:经过空气或其 – + N 它非导磁媒质闭合的磁通。
对于铁心线圈来说,电感L不为常数。
eL
d d ( Li ) di L 1)与式(2)是电动势的两种表达式,
一般当电感L为常数时,多采用式(2)。 而分析非线性电感时,由于L可变,一般采用式(1)。
3、电感元件上电压与电流的关系 习惯上选择电感元件上的电流、电压、自感 电动势三者参考方向一致,则
s
u2
变压器的磁路
Φ :主磁通 Φs :漏磁通
磁路:主磁通所经过的闭合路径。
3.3.2 磁路的基尔霍夫第一定律
对于有分支磁路,其分支汇集处称为磁路 的节点,磁路的任意节点所连接的各分支磁路的 代数和等于零。
I1 I2 N1 N2
2
1
3
1 2 3 0
即:
0
3.3.3 磁路的基尔霍夫第二定律
O
a 铸铁
b 铸钢
c 硅钢片
按磁性物质的磁性能,磁性材料分为三种类型: (1)软磁材料 具有较小的矫顽磁力,磁滞回线较窄。一般用来 制造电机、电器及变压器等的铁心。常用的有铸铁、 硅钢、坡莫合金即铁氧体等。 (2)永磁材料 具有较大的矫顽磁力,磁滞回线较宽。一般用来 制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 (3)矩磁材料 具有较小的矫顽磁力和较大的剩磁,磁滞回线接 近矩形,稳定性良好。在计算机和控制系统中用作记 忆元件、开关元件和逻辑元件。常用的有镁锰铁氧体 等。
电感的欧姆 定律
di u e L dt
注意
在直流电路中,由于电流变化率为零,所以电 感电压等于零,电感元件相当于短路。
相关主题