当前位置:文档之家› 8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算一、目的要求1.掌握纯扭、剪扭、弯剪扭构件的受扭承载力计算2.掌握剪扭相关性的含义3.受扭塑性抵抗矩的推导方法4.掌握抗扭纵筋和箍筋的构造要求二、重点难点1.剪扭相关性的应用2.弯剪扭构件受扭承载力的计算三、主要内容8.1概述钢筋混凝土构件的扭转可分为两类:平衡扭转和协调扭转。

平衡扭转:若构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出, 协调扭转:若扭矩是由相邻构件的位移受到该构件的约束而引起该构件的扭转,这种扭矩值需结合变形协调条件才能求得,这类扭转称为协调扭转。

构件在扭矩作用下将产生剪应力和相应的主拉应力,当主拉应力超过混凝土的抗拉强度时,构件便会开裂,因此需要配置钢筋来提高构件的受扭承载力。

8.2 构件的开裂扭矩8.2.1矩形截面构件的开裂扭矩(1)匀质弹性材料受扭应力分布由材料力学可知,匀质弹性材料的矩形截面受扭时,截面上将产生剪应力τ (图8.2),截面剪应力的分布如图8.3a 所示,最大剪应力产生在矩形长边中点。

由微元体平衡可知,主拉应力τσ=tp 其方向与构件轴线成450角。

当主拉应力超过混凝土的抗拉强度时,首先将在截面长边中点处垂直于主拉应力方向上开裂,然后逐渐伸展,裂缝与纵轴线大致成450角。

(2)理想塑性材料受扭应力分布对于理想的塑性材料来说,截面上某一点的应力达到强度权限时,构件并不立即破坏,只意味着局部材料开始进入塑性状态,构件仍能承受荷载,直到截面上的应力全部达到强度极限时,构件才达到其极限受扭承载力,这时截面上剪应力的分布如图8.3b 所示。

(3)弹塑性材料受扭应力分布由于混凝土既不是理想的弹性材料又不是理想的塑性材料,而是介于两者之间的弹塑性材料。

与实测的开裂扭矩相比,按理想的弹性应力分布计算的值偏低,而按理想的塑性应力分布计算的值又馆高。

要想准确地确定截面真实的应力分布是十分困难的,比较切实可行的办法是在按塑性应力分布计算的基础上,根据试验结果乘以一个降低系数。

设矩形截面的边长长边为h ,短边为b ,根据塑性力学理论,当截面上各点的剪应力都达到混凝土的抗拉强度六时,构件才达到其极限扭矩。

为了便于计算,可近似将截面上的剪应力分布划分为四个部分,即两个梯形和两个三角形(8.3c)。

计算各部分剪应力的合力及相应组成的力偶,对截面的扭转中心O 点取矩,可求得按塑性应力分布时截面所能承受的极限扭矩为混凝土不是理想塑性材料。

试验表明,对于高强度混凝土,其降低系数约为0.7,对于低强度混凝土,其降低系数接近0.8,为计算方便统一取0.7。

又由于素混凝土构件的开裂扭矩和极限扭矩基本相同,因此可以得开裂扭矩的计算公式为T cr =0.7t t W f受扭塑性抵抗矩t W 的计算公式也可以借助堆沙模拟法得到。

设砂堆安息角各斜面均为α,沙堆体积为V ,则截面的受扭塑性抵抗矩为αtan 2V W t =一般可取方便的α值,如取450,相应的1tan =α矩形截面,取45=α0,则2b H =,这样 )3(6])2(31[2)])((21[222b h b H b b b h bH V W t -=⨯+-==8.2.2 T 形截面构件的开裂扭矩对于T 形、I 形、倒I 。

形截面的受扭构件,可近似地将其截面视为由若干个矩形截面组成。

当构件受扭整个截面转动θ角时,组成截面的各矩形分块也将各自扭转相同的角度θ,构件的截面受扭塑性抵抗矩t W ,为各矩形分块的受扭塑性抵抗矩之和,即将T 形、Ⅰ形、倒L 形等截面分成矩形截面的方法与复板的宽度有关,当腹板的宽度大于上下翼缘的高度时,按图8.6a 所示方式划分计算比较方便;当腹板的宽度小于上下翼缘的高度时,按图8.6b 所示方式划分计算比较方便。

计算时取用的翼缘宽度尚应符合)6(''f f h b b +≤及)6(f f h b b +≤的规定。

8.3 纯扭构件的受扭承载力计算8.3.1抗扭配筋的形式扭矩在构件中引起的主拉应力轨迹线与构件的轴线成450角,从这一点看,合理的抗扭配筋似乎应该是沿与构件的轴线成450角方向布置的螺旋状箍筋.但由于螺旋状箍筋在受力上只能适应一个方向的扭转,而在实际工程中扭矩沿构件全长不改变方向的情况是比较少的,当扭矩改变方向时,螺旋状箍筋也必须相应地改变方向,这在构造上是很困难的。

所以,在实际结构中都是采用横向封闭箍筋与纵向受力钢筋组成的空间骨架来抵抗扭矩。

8.3.2受扭构件的试验研究结果钢筋混凝土纯扭构件的试验表明,配筋对提高构件开裂扭矩的作用不大,但配筋的数量及形式对构件的极限扭矩有很大的影响,构件的受扭破坏形态和极限扭矩随配筋数量的不同而变化。

如果抗扭钢筋配得过少或过稀,裂缝一出现,钢筋很快屈服,配筋对破坏扭矩的影响不大,构件的破坏扭矩和开裂扭矩非常接近,这种破坏过程迅速而突然,属于脆性破坏,也称为少筋破坏。

当配筋数量过多,受扭构件在破坏前的螺旋裂缝会更多更密,这时构件由于混蟹土被压碎而破坏,破坏时箍筋和纵筋均未屈服。

这种破坏与受弯构件的超筋梁类似,破坏时钢筋的强度没有得到充分利用,属于脆性破坏,也称为超筋破坏。

少筋破坏和超筋破坏均呈脆性,所以在设计中应予避免。

由于抗扭钢筋由纵筋和箍筋两部分组成,纵筋和箍筋的配筋比例对构件的受扭承载力也有影响。

当抗扭箍筋配置相对抗扭纵筋较少时,构件破坏时箍筋屈服而纵筋可能达不到屈服强度;反之,当抗扭纵筋配置相对抗扭箍筋较少时,构件破坏时纵筋屈服而箍筋可能达不到屈服强度;这种破坏称为部分超筋破坏。

部分超筋构件的延性比适筋构件要差一些,但还不是完全超筋,在设计中允许使用,只是不够经济。

抗扭纵筋和抗扭箍筋数量的比例用纵筋与箍筋的配筋强度比来表示,设抗扭箍筋单肢的截面面积为A 1st ,间距为s ,抗扭纵筋总的截面面积为且A stl ,矩形截面的边长长边为h ,短边为b(图8.7)。

b cor 和h cor 分别为从箍筋内表面计算的截面核芯部分的短边和长边边长,u cor 为截面核芯部分的周长,u cor =2(b cor + h cor ),y f 和yv f 分别为纵筋和箍筋的抗拉强度设计值,则定义纵筋与箍筋的配筋强度比ζ为corsv yv stl y sv yv cor stly u A f s A f sA f u A f 11==ζ 根据试验结果,当0.5≤≤ζ 2.0时,纵筋和箍筋一般都能较好地发挥其抗扭作用,为了稳妥起见,《规范》规定ζ的限制范围为0.6≤≤ζ 1.7,当>ζ 1.7时,取ζ=1.7。

工程结构中常用的范围为ζ=1.0~1.3。

8.3.3矩形截面纯构件承载力计算当抗扭钢筋配置适当时,穿过裂缝的纵筋和箍筋在破坏时都可以达到屈服强度,不发生超筋破坏和少筋破坏。

试验结果表明,构件的受扭承载力T u 由可认为混凝土承担的扭矩T c 和抗扭钢筋承担的扭矩T s 两部分组成,即T u = T c + T s根据国内大量试验研究的结果,《规范》建议钢筋混凝土矩形截面纯扭构件的受扭承载力按下列公式计算sA A f W f T st yv t t cot 12.135.0ξ+≤cor st yv stl y u A f sA f 1=ξ式中 T ——扭矩设计值;W t ——截面受扭塑性抵抗矩;t f ——混凝土抗拉强度设计值;ξ——受扭构件纵向钢筋与箍筋的配筋强度比值;yv f ——受扭箍筋抗拉强度设计值;1st A ——受扭计算中沿截面周边所配置箍筋的单肢截面面积;cor A ——截面核芯部分的面积,cor cor cor h b A =,此处cor b 和cor h 分别为从箍筋内表面计算的截面核芯部分的短边和长边边长s ——抗扭箍筋的间距;y f ——抗扭纵筋抗拉强度设计值;stl A ——受扭计算中取对称布置的全部纵向钢筋的截面面积;cor u ——截面核芯部分的周长,)(2cor cor cor h b u +=;8.3.4 T 形和I 形截面纯扭构件承载力计算试验研究表明,对于T 形和I 形截面纯扭构件,第一条斜裂缝首先出先现在腹板侧面中部,其破坏形态和规律与矩形截面纯扭构件相似。

图8.9为一腹板宽度大于翼缘高度的T 形截面纯扭构件的裂缝开展情况,如果将其悬挑翼缘部分去掉,可以见到腹板裂缝与其顶面的裂缝基本相连,形成了大致相互贯通的螺旋形斜裂缝。

这说明腹板裂缝的形成有其自身的独立性,受翼缘影响不大,可将腹板和翼缘分别进行抗扭计算。

在计算T 形和I 形截面纯扭构件的承载力时,可像计算开裂扭矩一样,将截面划分为几个矩形截面,并将扭矩了按照各矩形分块的截面受扭塑性抵抗矩分配给各个矩形,以求得各矩形分块所匝承担的扭矩。

各矩形分块所承担的扭矩设计值可按下列规定计算:8.4 弯剪扭构件承载力的计算在实际工程中,单纯的受扭构件是很少的,大多数情况是承受弯矩,剪力和扭矩的共同作用,构件处于弯、剪、扭共同作用的复合受力状态。

构件的受扭与受弯、受剪承载力是相互影响的,这种相互影响的性质称为相关性。

由于构件受扭、受弯与受剪承载力之间的邗互影响问题过于复杂,采用统一的相关方程来计算比较困难。

为了简化计算,《规范》对弯剪扭构件的计算采用了对混凝土提供的抗力部分考虑相关性,而对钢筋提供的抗力部分采用叠加的方法,现分别说明如下。

8.4.1剪扭构件承载力的计算在受扭和受剪承载力的计算公式中都有一项是反映混凝土所提供的抗力,即受扭计算中的0.35t t W f ,和受剪计算中的0.70bh f t (或00.175.1bh f t +λ)。

显然,在扭矩和剪力的共同作用下,混凝土部分所能承受的扭矩和剪力是相互影响的.图8.10给出了无腹筋构件在不同的扭矩与剪力比值下承载力的试验结果,图中纵坐标为0c c V V ,横坐标为0c c T T 。

这里0c V 和co T 分别表示无膻筋构件在单纯受剪力或扭矩作用时的受剪或受扭承载力,c V 和c T 分别表示构件同时承受剪力和扭矩作用时受剪和受扭承载力。

从图中可见,无腹筋的受剪和受扭承载力的相关关系大致按四分之一圆弧规律变化,即随着同时作用着的扭矩的增大,构件的受剪承载力逐渐降低,当扭矩达到纯扭构件的承载力时,其受剪承载力下降为零.反过来也是如此。

对于有膻筋的剪扭构件,其混疑土部分所提供的受剪承载力c V 和受扭承载力c T 之间可以认为也存在四分之一圆弧相关关系,这时坐标系中的0c V 和co T 。

可分别取有腹筋构件受剪承载力公式中的混凝土作用项,以及受纯扭承载力公式中的混凝土作用项,即``将(8.20)式、(8.21)式代入上式,并用构件承受的剪力设计值与扭矩设计值之比T V 代替公式中的c c T V ,则可得到t β的计算公式t β=05.015.1Tbh VW t + t β称为剪扭构件混凝土受扭承载力降低系数。

相关主题