当前位置:文档之家› 高考物理动能定理的综合应用解题技巧及练习题含解析

高考物理动能定理的综合应用解题技巧及练习题含解析

高考物理动能定理的综合应用解题技巧及练习题含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。

设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。

【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.3.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯4.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。

之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。

已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)(1)物块从A 滑到B 时的速度大小; (2)物块到达圆环顶点C 时对轨道的压力; (3)若弹簧最短时的弹性势能,求此时弹簧的压缩量。

【答案】(1)m/s ;(2)0N ;(3)10m 。

【解析】 【分析】 【详解】(1)对小物块从A 点到B 点的过程中由动能定理解得:;(2)小物块从B 点到C 由动能定理:在C 点,对小物块受力分析:代入数据解得C 点时对轨道压力大小为0N ;(3)当弹簧压缩到最短时设此时弹簧的压缩量为x ,对小物块从B 点到压缩到最短的过程中由动能定理:由上式联立解得:x =10m 【点睛】动能定理的优点在于适用任何运动包括曲线运动,了解研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题。

动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。

5.如图所示,质量为 1.0kg m =的小物体从A 点以 5.0m/s A v =的初速度沿粗糙的水平面匀减速运动距离 =1.0 m s 到达B 点,然后进入半径R =0.4m 竖直放置的光滑半圆形轨道,小物体恰好通过轨道最高点C 后水平飞出轨道,重力加速度g 取l0m/s 2。

求:(1)小物体到达B 处的速度B v ;(2)小物体在B 处对圆形轨道压力的大小N F ; (3)粗糙水平面的动摩擦因数μ。

【答案】(1)25m/s ;(2)60N ;(3)0.25。

【解析】 【详解】(1)小物体恰好通过最高点C ,由重力提供向心力,则:2Cv mg m R=得到:2m/s c v gR ==小物体从B 点运动到C 点过程中机械能守恒,则:2211222B C mv mv mg R =+⋅ 得到:2425m/s =+=B C v v gR ;(2)设小物体在B 处受到的支持力为'N F ,根据牛顿第二定律有:2'BNv F mg m R -=得到:'660N ==N F mg根据牛顿第三定律可知,小物块对轨道的压力N F 大小为60N ,方向竖直向下。

(3)小物体由A 到B 过程,由动能定理得到:221122B A mgs mv mv μ-=- 得到:0.25μ=。

【点睛】本题关键是恰好通过最高点,由重力提供向心力,然后再根据牛顿第二定律、机械能守恒和动能定理结合进行求解。

6.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。

求:滑块(1)到达B 点时的速度大小; (2)从B 点运动到C 点所用的时间; (3)落地点距C 点的水平距离。

【答案】(1)4m/s (2)1.25s (3)2m 【解析】 【详解】(1)滑块从A 到B 的运动过程只受重力、支持力、摩擦力作用,只有摩擦力做功,故由动能定理可得:220112122B mg L mv mv μ-⋅-=所以滑块到达B 点时的速度大小204m/s B v v gL μ-==(2)滑块从B 运动到C 的过程受合外力F =μ(mg -qE )=0;故滑块从B 到C 做匀速运动;设从B 点运动到C 点所用的时间为t ,则有:152s1.254B Lt s v ===(3)滑块在C 点的速度v C =4m/s ;滑块从C 点做平抛运动,则平抛运动时间20.5ht s g'== 故落地点距C 点的水平距离x =v C t'=2m ;7.有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动,AB 的长度为2m ,物体和AB 间动摩擦因素为μ1=0.1,BC 无限长,物体和BC 间动摩擦因素为23μ=, 求:(1)物体第一次到达B 点的速度;(2)通过计算说明最后停在水平面上的位置距B 点的距离. 【答案】(1)23/s v m =(2)2m 【解析】 【分析】由题中“有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动”可知,本题考查动能定理和能量守恒定律,根据对物体运动状态的分析结合能量变化可分析本题. 【详解】(1)据题意,当物体从A 运动到B 点过程中,有:2211122AB B A mgs mv mv μ-=- 带入数据求得:=23m /s B v(2)物体冲上斜面后,有:221-cos30sin 302BC BC B mg x mg x mv μ-=-o o解得:0.8BC x m =则有:2211-2cos302BC B mg x mgx mv μμ-=-o解得:2x m =即物体又回到了A 点.8.如图所示,整个轨道在同一竖直平面内,直轨道AB 在底端通过一段光滑的曲线轨道与一个光滑的四分之一圆弧轨道CD 平滑连接,圆弧轨道的最高点C 与B 点位于同一高度.圆弧半径为R ,圆心O 点恰在水平地面.一质量为m 的滑块(视为质点)从A 点由静止开始滑下,运动至C 点时沿水平切线方向离开轨道,最后落在地面上的E 点.已知A 点距离水平地面的高度为H ,OE=2R ,重力加速度取g ,不计空气阻力.求:(1)滑块运动到C 点时的速度大小V C ;(2)滑块运动过程中克服轨道摩擦力所做的功W f ;(3)若滑块从直轨道上A′点由静止开始下滑,运动至C 点时对轨道恰好无压力,则A′点距离水平地面的高度为多少?【答案】(1)滑块运动到C 点时的速度大小v C 是.(2)滑块运动过程中克服轨道摩擦力所做的功W f 是mg (H ﹣2R ). (3)A′点距离水平地面的高度为.【解析】试题分析:(1)滑块从C 到E 做平抛运动,水平位移为2R ,竖直位移为R 则有:2C R v t =、212R gt =,可解得2C v gR =(2)对于从A 到C 的过程,运用动能定理得()2102f C mg HR W mv -=-﹣ 解得,滑块运动过程中克服轨道摩擦力所做的功()2f W mg H R =- (3)设A '点的距离水平地面的高度为h .在C 点有'2Cv mg m R=① 从A′到C ,由动能定理得21()02f C mgh R W mv --'='-② 滑块在直轨道上下滑时重力做功与克服摩擦力做功的比值是定值,所以有:'()()(2)f mg H R h R mg H R W --=-解得(2)()()f H R h R W mg H R --'=-,代入②式联立①、②两式,可解得2H Rh +=考点:考查了动能定理;向心力.【名师点睛】本题要分析清楚物体的运动情况,正确选择研究过程,寻找每个过程和状态所遵守的物理规律是关系,要掌握平抛运动的研究方法:运动的分解法9.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=,求此过程中物块所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g 解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =-解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=10.如图所示,AB 为半径0.2m R =的光滑14圆形轨道,BC 为倾角45θ=︒的斜面,CD 为水平轨道,B 点的高度5m h =.一质量为0.1kg 的小球从A 点静止开始下滑到B 点时对圆形轨道的压力大小是其重力的3倍,离开B 点后做平抛运动(g 取210m /s )(1)求小球到达B 点时速度的大小;(2)小球离开B 点后能否落到斜面上?如果不能,请说明理由;如果能,请求出它第一次落在斜面上的位置.【答案】(1) 2m/s (2)能落在斜面上,1.13m 【解析】 【详解】(1)从A 到B 的过程由动能定理得:2012mgR mv =,解得:02m /s v =;(2)设小球离开B 点做平抛运动的时间为1t ,落地点到C 点距离为x ,由2112h gt = 得:11s t =,0121m 2m x v t ==⨯=斜面的倾角θ=45°,底边长d =h =5m ;因为d x >,所以小球离开B 点后能落在斜面上.假设小球第一次落在斜面上F 点,BF 长为L ,小球从B 点到F 点的时间为2t ,02cos L v t θ=①,2212sin L gt θ=②, 联立①、②两式得20.4s t =;则021.13m cos v t L θ==. 答:(1)小球到达B 点时速度的大小是2m/s ;(2)小球离开B 点后能落到斜面上,第一次落在斜面上的位置据B 的距离为1.13m .11.如图所示,半径R =0.4 m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为m =1 kg 的小物体(可视为质点)在水平拉力F 的作用下,从静止开始由C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后做平抛运动,正好落在C 点,已知x AC =2 m ,F =15 N ,g 取10 m/s 2,试求:(1)物体在B 点时的速度大小以及此时物体对轨道的弹力大小; (2)物体从C 到A 的过程中,克服摩擦力做的功. 【答案】(1)5m/s ;52.5N ,(2)9.5J 【解析】 【分析】 【详解】试题分析:(1)根据2122R gt =得,平抛运动的时间为:440.40.410R t s s g ⨯===,则B 点的速度为:2/5/0.4AC B x v m s m s t ===. 根据牛顿第二定律得,2B B v mg N m R+=,解得:25110N 52.5N 0.4B N =⨯-=. (2)对C 到B 的过程运用动能定理得:2122f AC B W Fx mg R mv +-⋅=,代入数据解得9.5f W J =-.12.如图所示,AB 为水平轨道,A 、B 间距离s=2m ,BC 是半径为R=0.40m 的竖直半圆形光滑轨道,B 为两轨道的连接点,C 为轨道的最高点.一小物块以v o =6m/s 的初速度从A 点出发,经过B 点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB 上的D 点处.g 取10m/s 2,求:(1)落点D 到B 点间的距离; (2)小物块经过B 点时的速度大小;(3)小物块与水平轨道AB 间的动摩擦因数.【答案】(1)0.8m.(2)(3)0.4【解析】试题分析:(1)物块恰能经过轨道最高点,有2C v mg m R =① 之后做平抛运动,有2122R gt =②BD C x v t =③ 联立①②③解得0.8BD x =m(2) 物块从B 点到C 点过程中机械能守恒,得2211222B C mv mv mgR =+④ 联立①④解得25B v =(3)物块从A 点到B 点做匀减速直线运动由动能定理得221122B o mgs mv mv μ-=-⑤ 将B v 代入⑤解得0.4μ= 考点:圆周运动及平抛运动的规律;动能定理及牛顿第二定律的应用.。

相关主题