当前位置:文档之家› 不同气动措施对特大型冷却塔风致响应及稳定性能影响分析

不同气动措施对特大型冷却塔风致响应及稳定性能影响分析

不同气动措施对特大型冷却塔风致响应及稳定性能影响分析摘要:为研究不同气动措施对特大型冷却塔结构风致强度及稳定性能的影响,以内陆某核电特大型冷却塔为例,对无气动措施和增设3种气动措施冷却塔进行刚体测压风洞试验.基于试验结果对比分析了不同气动措施下冷却塔表面平均和脉动风压特性,然后采用有限元方法进行不同气动措施下特大型冷却塔的动力特性、风致响应、局部和整体稳定性能研究,最终提炼出不同气动措施对特大型冷却塔结构抗风性能的影响规律.关键词:特大型冷却塔;气动措施;风洞试验;风压特性;风致响应;稳定性中图分类号:TU279.741 文献标识码:A文章编号:1674-2974(2016)05-0079-11Abstract:To study the wind-induced strength and stability properties of large cooling towers with different aerodynamic measures,the pressures of the rigid-body models without or with three different aerodynamic measures were measured by the wind tunnel tests. A nuclear super-large cooling tower inland was considered as the test specimen. The surface windmean and fluctuating pressure characteristics were investigated from the test results. Furthermore,finite element analysis was conducted to evaluate the dynamic characteristics of natural vibration,the wind-induced response,and the overall and local stability. Finally,the effective rules of the different aerodynamic measures on wind resistance for super-large cooling tower were proposed.Key words:super large cooling towers;aerodynamic measures;wind tunnel test;wind pressure characteristic;wind-induced response;stability随着能源产业结构的调整,作为火/核发电厂重要构筑物之一的冷却塔的规模日趋高大化,国内规范条款仅针对高度在165 m以下的冷却塔,其已无法满足当前特大型冷却塔建设的需求,同时塔高和直径的增大使特大型冷却塔在风荷载作用下的承载能力和稳定性能成为制约其发展的瓶颈之一[[1-2].国内外学者采用风洞试验和有限元方法对大型冷却塔的风致稳定性能进行了大量研究[[3-6],为其抗风设计提供了很好地技术支持.然而,国内外已有研究成果均未涉及不同气动措施[[7-8]下特大型冷却塔的风压分布特性,更缺乏不同气动措施对其风致响应和稳定性影响的定性和定量分析.鉴于此,本文以内陆某核电特大型冷却塔工程为背景,对无气动措施和增设3种不同气动措施的冷却塔进行刚体模型测压风洞试验,基于试验结果对比分析表面平均和脉动风压特性;再采用有限元方法进行不同气动措施下特大型冷却塔的风致响应及整体和局部稳定性研究,并与无气动措施下冷却塔的计算结果进行对比分析,最终提炼出不同气动措施对特大型冷却塔结构抗风设计的影响规律,主要结论可为此类特大型冷却塔气动措施的选取提供依据.1 风洞试验及结果分析1.1 刚体测压风洞试验本试验结构原型采用江西某核电特大型自然通风冷却塔[[1],塔高215 m,淋水面积18 300 m2,喉部高度160 m,中面半径49.64 m,塔筒分段等厚,最小厚度0.26 m,最大厚度1.8 m.表1给出了该工程冷却塔的主要结构尺寸.测压试验所用风洞为全钢结构闭口回流式低速大气边界层风洞,刚体模型采用1∶500缩尺比,沿环向和子午向共布置36×12个测点.同时在来流前部放置三角尖劈和地面粗糙元来模拟B类地貌的大气边界层风场.由于物理风洞本身的局限性,可通过适当改变模型表面粗糙度和调整试验风速来近似模拟冷却塔高雷诺数时的绕流特性[[9-10].通过比较确定采用二三层纸带间隔分布的形式沿圆周均匀布置宽5 mm,厚0.1 mm共计36条竖向通长粗糙纸带和来流风速10 m/s手段来模拟雷诺数效应(模型雷诺数为1.51×105).图1给出了在10 m/s试验风速下冷却塔中间断面平均表面压力系数分布与规范值[[11]的对比曲线,由图比较可知二者吻合较好,故后续不同气动措施下的冷却塔模型均采用此雷诺数模拟方法.3种气动措施分别为:在进风口上部设置外部进水槽、矩形导风板和弧形导风板,每种导风装置的尺寸如图2所示.相应计算模型简称无措施、措施1、措施2和措施3.其中不同气动措施模型如图3所示.1.2 结果分析图4给出了子午向0~50 m,50~100 m,100~150 m 和150~215 m高度区间内4种气动措施下冷却塔平均风压随环向角度变化曲线.由图可知,随着高度区间的增大,不同气动措施下冷却塔外表面的平均风压系数与无气动措施的分布差别越来越小,最大影响量从27.69%降至18.02%,在150~215 m高度区域内基本与无气动措施风压曲线分布一致,局部点差异较大;不同气动措施对120°~240°角度范围内即背风区域的风压系数影响较大,对侧风区域和迎风区域的平均风压影响相对较小. 图5给出了子午向0~50 m,50~100 m,100~150 m和150~215 m高度区间内不同气动措施下冷却脉动风压系数均方根对比曲线,对比可知在0~50 m范围内,4种冷却塔脉动风压系数均方根差别较大,最大百分比为33.87%,但随着塔高的增大不同气动措施下的脉动风压均方根逐渐接近无气动措施的分布曲线,且沿环向角度的变化规律趋于一致;在120°~240°角度范围内即背风区域不同气动措施对脉动风压的影响最为显著,在其他角度范围内区别相对较小.2 动力特性分析采用有限元方法分别对4种气动措施下的特大型冷却塔进行动力特性分析,图6给出了对应的有限元整体及局部模型,塔筒采用Shell63单元,子午向和环向分别划分为135和160个单元,支柱和环基采用Beam188单元,环基下部采用空间弹簧单元模拟弹性地基,每根桩基均采用3个力和力矩弹簧单元分别模拟桩沿竖向、环向、径向、绕竖向、绕环向和绕径向的作用,弹簧单元一端与环基刚性连接,另一端与地面固接约束,环基与支柱下部刚接,支柱上部与塔筒下部节点耦合.图7给出了4种塔型前100阶频率对比曲线.图8给出了4种冷却塔第一阶振型对比图.由图可看出:无气动措施冷却塔首阶振型为环向谐波的有3个,竖向谐波的有2个,而3种气动措施下冷却塔第一阶振型特性完全一致,环向谐波有4个,竖向谐波2个且下部竖向谐波形状完整.由图可看出,四者基频分别为:气动措施2(0.657 0)> 气动措施1(0.656 6)> 气动措施3(0.656 2)> 无气动措施(0.643 8);措施2冷却塔的各阶频率相比其他三者为最大,在0~60阶范围内,措施1和措施3两种冷却塔的频率十分接近.3 同组风压下冷却塔的受力性能分析本节均采用无气动措施冷却塔外表面的平均风压系数对4种冷却塔模型进行加载分析.3.1 环基与支柱响应图9和图10给出了同一组风荷载作用下不同气动措施冷却塔环基径向位移曲线和支柱轴力曲线,由图分析可知:1)气动措施的设置对于环基侧风区域的径向位移影响最大,对背风区域影响相对略小,对迎风区域的环基径向位移影响最小,4者几乎吻合;2)不同气动措施下冷却塔的支柱轴力分布趋势一致,在侧风区和背风区局部支柱处略有差别.3.2 塔筒响应图11给出了同一组风压下塔筒70°子午线上的节点径向位移和单元环向应力沿高度变化曲线图.由图可见当对不同气动措施冷却塔施加同一组风压时,70°子午线上的节点径向位移和单元环向应力几乎没有差别,仅在气动措施所在处高度及喉部有较小差别.3.3 整体稳定性验算进行整体稳定性[12]验算的输入荷载组合为自重+K(风荷载+内吸力),K为失稳特征值,失稳临界风速是K与基本风速的乘积,此时的风荷载均为无气动措施下冷却塔的表面风荷载.计算得到4种气动措施下冷却塔的屈曲系数、临界风速及屈曲模态如表2所示.由表可知:1)气动措施的设置可以提高冷却塔的静风整体稳定性;2)同一风荷载作用下措施1对提高冷却塔整体稳定性的影响效果最好,此时对应的屈曲失稳临界风速为217.29 m/s.4 风致响应特性本节采用不同气动措施下对应各自的冷却塔外表面平均风压系数对四种冷却塔进行静风加载,具体研究不同气动措施及其风压分布对冷却塔受力性能和屈曲稳定的影响.4.1 环基位移图12给出了不同气动措施下冷却塔环基的径向、环向和竖向位移曲线.由图可见:1)对应风荷载作用不同气动措施对冷却塔环基的变形影响作用较大,4种塔型位移变化规律一致;2)不同气动措施对冷却塔的位移影响在侧风区域和背风区域影响较大,在迎风区域影响较小;3)冷却塔的竖向位移变化剧烈,不同范围内的节点竖向位移突变严重.4.2 支柱内力图13给出了不同气动措施下冷却塔支柱顶部轴力变化曲线,按支柱倾斜方向分为奇数支柱和偶数支柱.由图看出:1)奇数支柱与偶数支柱轴向力呈轴对称;2)不同气动措施下冷却塔的支柱轴向力分布趋势几乎相同,无气动措施奇数和偶数支柱轴向力分别在支柱编号16~24范围内和编号24~32范围内突然减小,其它范围内冷却塔支柱轴向力以气动措施1作用下最大,以无气动措施作用下为最小,气动措施2和3对支柱轴向力影响相当.4.3 塔筒位移选择迎风点(0°)、零压力系数点(30°)、负压极大值点(70°)及背风点(180°)4个代表性区域进行不同气动措施冷却塔的筒壁位移响应分析.图14给出了不同气动措施冷却塔在各自风荷载作用下的塔筒0°,30°,70°及180°子午线上径向位移随高度的变化曲线.对比分析可得:1)不同气动措施冷却塔在0°和70°子午线上节点径向位移在喉部以下比较接近,在喉部以上数值稍有差异,最大相差12.67%;2)在30°子午线上的径向位移差异较大,125 m以下无气动措施冷却塔位移最大,带弧形导风板冷却塔位移最小,达到喉部高度后位移突然减小,其中以无气动措施冷却塔减小趋势最明显;3)180°子午线上节点位移在塔筒中下部以无气动措施冷却塔最大,达到喉部高度后位移均开始减小.喉部壁厚较薄,属于冷却塔的薄弱部位,有必要对其径向位移分布特性进行研究.图15给出了4种气动措施下冷却塔的喉部径向位移随角度的变化曲线,可将0.00圆环假定为冷却塔喉部原形.由图可见4种冷却塔的喉部径向位移大小和变化趋势几乎一致,其中喉部最大径向负位移-0.041出现在正迎风角0°处,最大正位移0.036出现在±70°附近;在0°~45°范围内,径向位移为负,且逐渐减小;45°~70°范围内,径向位移为正,且逐渐增大;70°~100°范围内,径向位移为正,且逐渐减小;100°~180°范围内,径向位移先增大后减小至0继而增大至0.005左右.。

相关主题