当前位置:文档之家› 高精度运动控制系统的关键技术及综合运用-PPT精品

高精度运动控制系统的关键技术及综合运用-PPT精品


➢ 光栅传感器精度的决定因素
➢ 光栅尺的精度
➢ 线距,或信号周期(每毫米线数,或每圈线)
➢ 光栅尺的热敏系数
➢ 差值技术
➢ 信号质量
➢ 频率响应与最高速度
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM]
线性编码器最大速度 = [扫描频率(Hz)*信号周期 (micron) ]*10e-6
2020/4/16
执行机构的主要性能指标
• 系统刚度 • 系统共振频率 • 系统的承载能力 • 系统最大运行速度及加速度 • ……
2020/4/16
装配工艺中应注意的问题
• 设备的装配质量受到多方面因素的影响,除了技术、工艺方面的问题以外,还与装 配工人的人为因素有关,这里我们重点介绍一下位置反馈传感器的选取与安装
伺服控制:运动控制在于如何产生运动控制指令(算法),而伺服控制在于如何让 机电系统快速,准确地跟踪运动控制指令
• 系统实验与系统辩识 • 振动分析与抑振技术 • 鲁棒控制技术 • 自适应控制 • 自学习与自调整 • 模糊训练
2020/4/16
伺服驱动器的主要性能指标
• 工作电压 • 输出电流 • 工作效率 • 伺服控制算法 • 闭环响应带宽 • 动/静态精度 • 控制刚度 • 稳态时间 • 分辨率 • 采样时间/控制频率 • 各种保护功能
公司自主研制的0.1微米级精密运动平台及集成 控制系统是微电子制造和测试设备的核心部件,也 是生物医疗设备和精密制造业发展的关键部件,这 些产品在以上领域的应用可以极大提高我国的制造 水平,缩小和先进国家的差距。
2020/4/16
公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。
过压保护/欠压报警、短路保护、最大电流持续时间、连续/RMS电流 保护、过温保护、停机保护、失控保护(电流反灌保护)
2020/4/16
执行机构设计的关键技术
执行机构
运动系统的执行机构由电机及完成运动的机械结构组成,执行机构的 设计主要目的是提高系统刚性、抑制系统的低频共振。 • 执行机构/电机的设计 • 运动连接及动力传输 • 动力学分析与仿真 • 结构与振动分析 • 直线电机的兴起及应用 • ……
硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
2020/4/16
总结
• 运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析
• 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 • 采用闭环控制首要考虑的是系统稳定性 • 运动控制的性能不仅要考核时域响应,还要考核频域特性 • 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/
实例:编码器安装对信号质量及精度的影响
安装误差的影响
பைடு நூலகம்2020/4/16
实例:编码器安装对信号质量及精度的影响(续) 信号质量对误差影响
2020/4/16
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护
机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… …
公司还代理销售MicroE、SIKO、 ELMO等多家国外知名品牌的光栅、磁 栅、驱动器、控制器等产品,并为客户 提供技术支持和伺服运动控制系统集成 。
2020/4/16
运动控制系统的关键技术
2020/4/16
运动控制系统的基本构成
人机接口/高层指令生成
运动控制平台/运动控制卡 功率放大器/驱动器
• 运动控制
➢ 产生相对于时间的空间轨迹,以及直接实现各机械模块之间的同 步控制, 例如:
✓ 电子齿轮变速(无级变速) ✓ 各种平面曲线,圆,椭圆, y(t) = f(x(t)) ✓ 各种空间曲线, z(t) = f(x(t), y(t))
• 运动插补 • 高阶运动轨迹生成 • 运动控制系统的自学习与自调整 • 工业现场的高速网络化通讯 • ……
[m/sec]
其中 信号周期 = 测量步距 (micron) * 细分倍数 * 4
[micron]
➢ 安装要求
➢ 反映真实的被测物理变量
➢ 对电气及机械噪声干扰不敏感
➢ 可允许的振动与冲击的工作环境
➢ 光栅尺与读数头的安装刚度
➢ 光栅传感器的非运动部件的振动隔离
➢ 传感器电缆的最小弯曲半径
2020/4/16
2020/4/16
运动控制的主要技术指标
• 可产生的运动轨迹的种类(直线,圆,弧线,任意曲线) • 轨迹相对时间的阶次 • 最高速度,最高加速度 • 位置,速度精度 • 可同时控制运动轴数(4 轴,8,轴,……) • 运动轴之间的同步 • 伺服轴的数目 • ………
2020/4/16
伺服控制中的关键技术
➢ 同时算法的复杂性还要受到系统实时性和计算机的速度的制约。
•通常在理想时间轨迹之外,还需加入补偿控制,以实现运动的快速性及平稳性。
关键技术:
高精度运动控制系统的关键技术涉及:运动控制、伺服控制、机械 结构设计及材料选择、装配工艺以及系统的保护等诸多方面的技术 。
2020/4/16
运动控制中的关键技术
2020/4/16
公司简介(一)
北京慧摩森电子系统技术有限公司是以开发生 产高精度运动定位系统为主的高新技术企业,所研 发产品集成光机电一体化技术,采用的技术和产品 精度达到国际先进水平。
目前直线电机在运动控制领域的应用越来越广 泛,我公司所生产的SM系列直线电机性能稳定, 质量好,与PWM的驱动控制器及直线光栅编码器组 成伺服运动系统,代替传统的丝杠和皮带传动结构 形式,简化了结构,提高了运动控制系统的性能。
2020/4/16
反馈传感器
被控对象
执行机构/电机
运动控制系统的要求及所涉及关键技术
要求:
在机械结构允许的情况下,产生最快最平稳的时间轨迹.
➢ 这就需要在下列系统限制的情况下确定算法: ✓ 机械机构的固有频率, ✓ 执行机构的响应时间, ✓ 伺服系统通带宽度, ✓ 电机功率, ✓ 驱动器功率, ✓ 传感器响应及限制 ✓ 电源电压, ✓ ….
相关主题