第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lk t x l u u k dQ ∆∆--=∆∆--=111124π 又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为 ()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3 由热量守恒原理得:()t x s u u lk t x s x ukt x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ 消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
一般情形1=C 。
由于21,,t t Ω的任意性即得方程:⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂z u D z y u D y x u D x t u C3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的水化热成正比。
以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则Q dtdQβ-=,其中β为常数。
又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。
解: 可将水化热视为一热源。
由Q dtdQβ-=及00Q Q t ==得()t e Q t Q β-=0。
由假设,放热速度为te Q ββ-0它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得⎪⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂-ρρββc k a e c Q z u y u x u a t u t 202222222 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程()2201224.0ρωρωρc ri u u c P k x u c k t u +--∂∂=∂∂其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。
解:问题可视为有热源的杆的热传导问题。
因此由原71页(1.7)及(1.8)式知方程取形式为()t x f xu a t u ,222+∂∂=∂∂其中()()()t x F c t x F t x f c k a ,,/,,,2ρρ==为单位体积单位时间所产生的热量。
由常电流i 所产生的()t x F ,1为22/24.0ωr i 。
因为单位长度的电阻为ωr ,因此电流i 作功为ωri 2乘上功热当量得单位长度产生的热量为ω/24.02r i 其中0.24为功热当量。
因此单位体积时间所产生的热量为22/24.0ωr i由常温度的热交换所产生的(视为“被动”的热源),从本节第一题看出为()014u u l k --其中l 为细杆直径,故有ll l p 44/2==ππω,代入得 ()()012,u u pk t x F --=ω因热源可迭加,故有()()()t x F t x F t x F ,,,21+=。
将所得代入()t x f xua t u ,222+∂∂=∂∂即得所求: ()22012224.0ρωρωρc ri u u c P k x u c k t u +--∂∂=∂∂ 5*. 设物体表面的绝对温度为u ,此时它向外界辐射出去的热量依斯忒---波耳兹曼(Stefan-Boltzman)定律正比于4u ,即dsdt u dQ 4σ=今假设物体和周围介质之间只有辐射而没有热传导,又假设物体周围介质的绝对温度为已 知函数),,,(t z y x f ,问此时该物体热传§导问题的边界条件应如何叙述?解:由假设,边界只有辐射的热量交换,辐射出去的热量为,|41dsdt u dQ s σ=辐射进来的热量为,|42dsdt f dQ s σ=因此由热量的传导定律得边界条件为:]||[|44s s s f u nuk -=∂∂σ§2 混合问题的分离变量法1. 用分离变量法求下列定解问题的解:⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=>=∂∂=<<>∂∂=∂∂)0()()0,()0(0),(),0(0,0()222πππx x f x u t t x u t u x t x u a tu 解:设)()(t T x X u =代入方程及边值得⎪⎩⎪⎨⎧=+'='==+00)(0)0(02"T a T X X X X λπλ 求非零解)(x X 得x n x X n n n 212sin )(,4)12(2+=+=λ ),1,0(Λ=n 对应T为 t n a n n e C t T 4)12(22)(+-=因此得 ∑∞=+-+=4)12(212sin),(22n tn a nx n eC t x u 由初始值得 ∑∞=+=0212sin)(n n x n C x f 因此 ⎰+=ππ212sin)(2xdx n x f C n 故解为 ∑⎰∞=+-+⋅+=4)12(212sin212sin)(2),(22n tn a x n ed n f t x u πξξξπ 2.用分离变量法求解热传导方程的混合问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>==⎪⎩⎪⎨⎧<<-≤<=<<>∂∂=∂∂)0(0),1(),0(1211210)0,()10,0(22t t u t u x x x x x u x t xut u 解:设)()(t T x X u =代入方程及边值得⎩⎨⎧=+===+0'0)1()0(0"T T X X X X λλ求非零解)(x X 得x n X n n n ππλsin ,22== n=1,2,…… 对应T为 tn n n e C T 22π-=故解为 ∑∞=-=1sin ),(22n t n n x n e C t x u ππ由始值得∑∞=⎪⎩⎪⎨⎧<<-≤<=11211210sin n n x x x x x n C π因此 ⎰⎰-+=210121]sin )1(sin [2xdx n x xdx n x C n ππ1212221022]sin 1cos )1(1[2]sin 1cos 1[2x n n x n x n x n n x n x n ππππππππ---++-= 2sin 422ππn n =所以 ∑∞=-=122sin 2sin 4),(22n t n x n e n n t x u ππππ 3.如果有一长度为l 的均匀的细棒,其周围以及两端l x x ==,0处均匀等到为绝热,初始温度分布为),()0,(x f x u =问以后时刻的温度分布如何?且证明当)(x f 等于常数0u 时,恒有0),(u t x u =。
解:即解定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂=∂∂∂∂=∂∂===)(|0||00222x f u x u xux u a t u t l x x设)()(t T x X u =代入方程及边值得⎩⎨⎧=+===+0'0)(')0('0"2T a T l X X X X αλλ 求非零解)(x X :)1( 当0<λ时,通解为x x Be Ae x X λλ---+=)(x x e B e A x X λλλλ------=)('由边值得 ⎩⎨⎧=---=------00le B eA B A lλλλλλλ 因0≠-λ故相当于 ⎩⎨⎧=-=----00ll Be AeB A λλ 视B A ,为未知数,此为一齐次线性代数方程组,要)(x X 非零,必需不同为零,即 此齐次线性代数方程组要有非零解,由代数知必需有011=-----lle eλλ 但011≠-=--------lllle eeeλλλλ因,0,0>->λl x e 为单调增函数之故。
因此没有非零解)(x X 。
)2(当0=λ时,通解为ax X bax x X =+=)(')(由边值得 0)(')0('===a l X X 即b 可任意,故1)(≡x X 为一非零解。
)3(当0>λ时,通解为xB x A x X x B x A x X λλλλλλcos sin )('sin cos )(+-=+=由边值得 ⎩⎨⎧=+-===0cos sin )('0)0('l B l A l X B X λλλλλ因,0≠λ故相当于⎩⎨⎧==0sin 0l A B λ要)(x X 非零,必需,0≠A 因此必需,0sin =l λ即)(整数n n l πλ=)(整数n ln πλ=这时对应 )1(cos )(==A x ln x X 取π因n 取正整数与负整数对应)(x X 一样,故可取ΛΛΛΛ,2,1cos )(,2,1)(2=====n x ln x X n l n l n n ππλπλ 对应于,1)(,00==x X λ解T 得00)(C t T = 对应于,)(2l n πλ=,cos)(x ln x X n π=解T 得tl an n n eC t T 2)()(π-= 由迭加性质,解为∑∞=-+=1)(0cos ),(2n tlan n x l n eC C t x u ππ∑∞=-⋅=)(cos2n t lan n x ln eC ππ 由始值得 ∑∞==cos)(n n x ln C x f π因此 ⎰=ldx x f l C 00)(1 ⎰=ln xdx l n x f l C 0cos )(2π ΛΛ,2,1=n 所以 ⎰∑⎰∞=-⋅+=ln lt lan x ln ed l n f l dx x f l t x u 010)(coscos )(2)(1),(2πξξπξπ 当const u x f ==0)(时,0cos2,1000000====⎰⎰xdx ln u l C u dx u l C ln l πΛ,2,1=n 所以 0),(u t u u =4.在,0>t l x <<0区域中求解如下的定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧===--∂∂=∂∂)()0,(),(),0()(002222x f x u u t l u t u u u x utu βα其中0,,u βα均为常数,)(x f 均为已知函数。