当前位置:
文档之家› 2018年高考物理(北京市专用)复习专题测试(必考)课件-专题四 曲线运动 (共58张PPT)
2018年高考物理(北京市专用)复习专题测试(必考)课件-专题四 曲线运动 (共58张PPT)
2.(2013安徽理综,18,6分)由消防水龙带的喷嘴喷出水的流量是0.28 m3/min,水离开喷口时的速度
大小为16 3m/s,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水
柱的高度和水量分别是(重力加速度g取10 m/s2) ( )
A.28.8 m 1.12×10-2 m3
60
考点二 抛体运动
3.(2017课标Ⅱ,17,6分)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。一小
物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与
轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g) ( )
A. v2
16g
B. v2
,v=
kQe mr
,则半径r越大,加速度a
向、角速度ω和线速度v均越小,而周期T越大,故选项C正确。
考查点 圆周运动。 知识延展 在经典物理中,电子绕核运动的情况和卫星绕地球的运动类似,随着运动半径的增 大,运动的线速度、角速度、加速度都变小,周期变大。
B组 统一命题、省(区、市)卷题组
考点一 曲线运动 运动的合成与分解
4h
2h
(3)由能量关系
1 2
m v22
+mgh=
1 2
mv12
+2mgh
⑦
代入④、⑤式解得L=2 2 h ⑧
方法技巧 解决本题的关键是抓住能被探测到的微粒所满足的运动学特征:下降高度在h~2h、 水平位移相同且都为L。 评析 本题考查了平抛运动,背景材料为真空中微粒在重力场中的能量探测,巧妙融合了动态分 析,有效考查了考生的分析运算能力,难度中等偏易。
A.t B. 2 t C. t
D. t
2
2
4
答案 C 本题考查平抛运动、运动的独立性。依据运动的独立性原理,在水平方向上,两球之
间的距离d=(v1+v2)t=(2v1+2v2)t',得t'=
t 2
,故选项C正确。
规律总结 运动的独立性原理、相对运动
一个物体同时参与几个独立的运动,每个分运动相互独立,运动规律互不影响。
A.x2-x1=x3-x2,ΔE1=ΔE2=ΔE3 B.x2-x1>x3-x2,ΔE1=ΔE2=ΔE3 C.x2-x1>x3-x2,ΔE1<ΔE2<ΔE3 D.x23
答案 B 由题意知,1、2间距等于2、3间距,由于竖直方向是匀加速运动,故t12>t23,又因为水平 方向为匀速运动,故x2-x1>x3-x2;忽略空气阻力,平抛运动中,机械能守恒,故ΔE1=ΔE2=ΔE3=0,所以B 选项正确。
2a
8g
解题关键 小物块运动的过程分为两个阶段,一是由轨道最低点到轨道最高点的曲线运动,符合 机械能守恒定律;二是从轨道最高点到水平地面的平抛运动。根据两个阶段列方程,联立得出关 于x的表达式是解题的关键。
4.(2017江苏单科,2,3分)如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相 遇。若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为 ( )
8g
C. v2
4g
D. v2
2g
答案 B 本题考查机械能守恒定律、平抛运动。小物块由最低点到最高点的过程由机械能 守恒定律有
1 2
mv2=mg·2R+1
2
mv12
小物块从最高点水平飞出做平抛运动
有:2R= 1 gt2
2
x=v1t(x为落地点到轨道下端的距离)
联立得:x2= 4v2 R-16R2
g
当R=- b ,即R= v2 时,x具有最大值,选项B正确。
得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t= 1 ×2 r =2.79 s,故D项错误。
3 v1
审题指导 首先要注意大、小圆弧半径不同,允许的最大速度不同;其次要充分利用几何关系, 找出直道的长度和小圆弧所对圆心角,这样才能求出赛车在直道上的加速度和通过小圆弧弯道 的时间。
9.(2015天津理综,4,6分)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的 不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。当旋转舱绕其轴线匀 速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持 力。为达到上述目的,下列说法正确的是 ( )
g
t12
。当v取最大值时
其水平位移最大,落点应在右侧台面的台角处,有vmaxt1=
L12
( L2 2
)2
,解得vmax=
1 2
(4L12 L22 )g ;当v取
6h
最小值时其水平位移最小,发射方向沿正前方且恰好擦网而过,此时有3h-h=
1 2
g
t22
,
L1 2
=vmint2,解得
vmin=
L1 4
2g
Mg=M vm2 ,所以vm= (2F Mg)L ,选项D正确。
L
M
解题关键 静摩擦力变化的判断分析 夹子与物块间的静摩擦力随着物块运动情况的变化而变化。在匀速阶段,静摩擦力与物块重力 平衡,碰到钉子后,由于向心力的需要,摩擦力会突然变大,当摩擦力达到最大值后,仍无法满足向 心力的需要,物块就会从夹子中滑落。
A.旋转舱的半径越大,转动的角速度就应越大 B.旋转舱的半径越大,转动的角速度就应越小 C.宇航员质量越大,旋转舱的角速度就应越大 D.宇航员质量越大,旋转舱的角速度就应越小 答案 B 宇航员在舱内受到的支持力与他站在地球表面时受到的支持力大小相等,mg=mω2r, 即g=ω2r,可见r越大,ω就应越小,B正确,A错误;角速度与质量m无关,C、D错误。
高考物理 (北京市专用)
专题四 曲线运动
五年高考
A组 自主命题·北京卷题组
1.(2013北京理综,19,6分,0.55)在实验操作前应该对实验进行适当的分析。研究平抛运动的实验 装置示意如图。小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出。改变水平 板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹。某同学设想小球先 后三次做平抛,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距。若三次 实验中,小球从抛出点到落点的水平位移依次为x1、x2、x3,机械能的变化量依次为ΔE1、ΔE2、Δ E3,忽略空气阻力的影响,下面分析正确的是 ( )
g 。故D正确。
h
6.(2016浙江理综,23,16分)在真空环境内探测微粒在重力场中能量的简化装置如图所示。P是一 个微粒源,能持续水平向右发射质量相同、初速度不同的微粒。高度为h的探测屏AB竖直放置, 离P点的水平距离为L,上端A与P点的高度差也为h。 (1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围; (3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系。
B.28.8 m 0.672 m3
C.38.4 m 1.29×10-2 m3
D.38.4 m 0.776 m3
答案 A 如图,水离开喷口时水平速度vx=v cos 60°=8 m3/s
vy=v sin 60°=24 m/s
所以高度h=
v
2 y
=28.8 m
2g
上升时间t= vy =2.4 s
g
所以水量为0.28× 2.4 m3=1.12×10-2 m3,选项A正确。
A.物块向右匀速运动时,绳中的张力等于2F B.小环碰到钉子P时,绳中的张力大于2F C.物块上升的最大高度为 2v2
g
D.速度v不能超过 (2F Mg)L
M
答案 D 本题考查受力分析、圆周运动。设夹子与物块间静摩擦力为f,匀速运动时,绳中张力
T=Mg=2f,摆动时,物块没有在夹子中滑动,说明匀速运动过程中,夹子与物块间的静摩擦力没有
A.在绕过小圆弧弯道后加速 B.在大圆弧弯道上的速率为45 m/s C.在直道上的加速度大小为5.63 m/s2 D.通过小圆弧弯道的时间为5.58 s
答案 AB 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过 小圆弧时,由2.25mg= mrv12得v1=30 m/s;通过大圆弧时,由2.25mg= mRv得22 v2=45 m/s,B项正确。赛车 从小圆弧到大圆弧通过直道时需加速,故A项正确。由几何关系可知连接大、小圆弧的直道长x =50 3m,由匀加速直线运动的速度位移公式: v2-2 v12=2ax得a≈6.50 m/s2,C项错误;由几何关系可
A. L1
2
B. L1
4
g <v<L1 g
6h
6h
g <v< (4L12 L22 )g
h
6h
C. L1
2
D. L1
4
g <v< 1 (4L12 L22 )g
6h 2
6h
g <v< 1 (4L12 L22 )g
h2
6h
答案
D
乒乓球做平抛运动,落到右侧台面上时经历的时间t1满足3h=
1 2
考查点 平抛运动。 易错警示 机械能是动能与势能的总和,在平抛运动中,忽略空气阻力的影响,重力势能的减少 量转化为动能的增加量,整个过程中动能与重力势能的总和保持不变。
2.(2013北京理综,18,6分,0.90)某原子电离后其核外只有一个电子,若该电子在核的静电力作用
下绕核做匀速圆周运动,那么电子运动 ( )
1.(2014四川理综,4,6分)有一条两岸平直、河水均匀流动、流速恒为v的大河。小明驾着小船渡 河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直。去程与回程所用时间的比值 为k,船在静水中的速度大小相同,则小船在静水中的速度大小为 ( )