当前位置:文档之家› 第3章阵列信号处理2014

第3章阵列信号处理2014

第三章 阵列信号处理
• 通信信号处理的总体目标:提取并利用包含在接收信号中的有用特征 信息,恢复并重构原始信号(时域、频域、空域、多域联合)
• 均衡技术就是利用接收信号的延迟样本在时域或频域上存在的差异来
抑制干扰,这种差异在空域也具备
• 时域信号具有频谱 (功率谱),空域信号具有空间谱;时域处理能获得
• 基本思想:利用空间平滑预处理修正输入协方差矩阵,将等距线阵划分为
若干个均匀重叠的前向子阵,{0,…,p-1} 为第1前向子阵; {1,…,p}为第2前
向子阵,……,p<M,每个子阵都有自己的参考相位中心
• 第l个前向子阵列的接收信号向量
• 对应的协方差矩阵
相干信源的DOA估计——前向平滑
• 所有前向子阵列的输入协方差矩阵平均
射频 前端 射频 前端 ... 射频 前端 ADC x L k 采样 ADC x1 k 采样 ADC x 2 k 采样
* k w1
yk
* k w2
* k wL
概述
• 阵列信号处理涉及的主要内容 信源数估计:获取空间分布的信源数目
DOA检测与估计:检测和估计分布在不同空间位置的信源到达阵列天
其均值为零
• 信号样本足够多、接收信噪比足够高、信号模型足够准确,MUSIC算法
能获得任意DOA估计精度(超分辨)
I ( A) N log P( A) H pi log pi
i 1
MUSIC算法流程
1. 根据 N 次快拍接收信号样本计算输入协方差矩阵(时间平均)
2. 对输入协方差矩阵进行特征值分解
3. 利用最小特征值重数获得信源数估计
4. 计算MUSIC空间谱
5. 搜索谱峰获得信号DOA估计
I ( A) N log P( A) H pi log pi
i 1
MUSIC算法应用举例
8阵元,SNR=-5dB,入射方向 5、30、45度
8阵元,SNR=10dB,入射方向5、 30、35度
• 观察空间:由天线阵列构成,接收信号包括 信号特征(方向、距离、极化等)和环境特征 (噪声、干扰等)
通 道 1
通 道 2
通 道 N
空间谱算法处理器
• 估计空间:利用空域滤波技术从观察数据中
估计空间
提取信号特征参数
DOA检测与估计
• DOA检测与估计基本原理:远场辐射源到达阵列中不同阵元会产生路
程差 (波程差),该路程差导致接收阵元之间存在相位差,空间谱估计
线的来波方向
波束形成/合成/赋形:依据来波方向调整阵列天线各个阵元的加权参
数 (空间滤波),使形成的波束主瓣指向期望信号来波方向,增强在该
方向的接收信号功率,同时尽可能使波束零陷对准干扰信号来波方向,
降低干扰信号功率,提高接收信干噪比(SINR)
阵列信号处理基础
• 阵列信号处理是一种进行空间滤波的信号处理手段
• 基本思想:通过一定结构的天线阵列收发信号,通过对不同阵元收发
信号赋以不同加权量,按需增强或抑制不同方向的辐射增益,形成定 向波束,主瓣对准期望信源,同时利用自适应处理算法实时调整加权 量,实现对期望信源的方向跟踪 (支持期望信源移动)
阵列信号处理基础
• 关键部件 阵列结构:不同阵列结构的性能不同,代价也不同 (线阵、园阵、面阵)
最小方差最优加权向量

空间谱
传统法
存在的问题:对相关信号无效、要求高信噪比、运算量大
8阵元,SNR=50dB,入射方向 5(1)、30(2)、40(3)度;信号1期 望,2、3干扰,且1、3相关
8阵元,SNR=-10dB,入射方 向5(1)、30(2)、40(3)度;信号1 期望,2、3干扰
子空间法
其最小范数问题的求解为:
• 最小范数空间谱为:
MUSIC算法改进
• 求根MUSIC算法:基本MUSIC算法的一种多项式求根形式,其基本思想源 于矩阵论中的Pisarenko分解 • 定义多项式 • 为了从噪声特征向量中同时提取出信号相关信息,应求取 零点,但由于该函数不是z的多项式,将其替换为求根MUSIC多项式 的
概述
• 阵列天线有两大类:多波束天线阵和自适应天线阵 多波束天线阵:采用多个固定波束覆盖特定的空间区域,每个波束 的指向固定。根据目标的空间位置和方向选取相应的波束,使收用户d 开关控制
波束2 ... 波束n
概述
• 自适应天线阵:根据一定的准则,利用自适应算法和数字信号处理技 术形成天线阵列的加权向量,对不同阵元的接收信号加权合并,在期 望信号方向上形成波束主瓣,而在干扰信号方向上形成零陷,以提高 接收信号的信干噪比——智能天线
8阵元,SNR=50dB,入射方向5(1)、30(2)、45(3)度;信号1期望,2、 3干扰,且1、2、3为相干信号
前向空间平滑预处理是以降低阵列孔径为代价的,此法能获得M/2个相
关信源的来波方向估计
相干信源的DOA估计——前/后向平滑
• 阵列输入协方差矩阵
MUSIC算法
• 假设 的特征值为
• 存在特征方程 • 所以 • 从而 • 分析表明, • 意味着 的特征值 是正定的,K个信源,有K个特征值 个特征值等于噪声方差
对应的M个特征值中,有
• 最小特征值重数 N=M-K ,信源数为
MUSIC算法
进一步假设特征值
根据
对应的特征向量为
• 瑞利限:一定阵列长度下能达到的最小分辨率 • 超分辨算法:MUSIC算法 • 子空间法的理论依据:将线性空间的概念引入DOA估计,假定阵元数 大于信源数,阵列数据的信号分量一定位于某个低秩的子空间,在一 定条件下,该子空间能唯一确定信号的DOA,且利用奇异值分解能求 出该DOA
• 子空间法的实现方法:利用信号子空间和噪声子空间之间的正交性,
• 上述多项式的根是单位圆镜像的,具有最大幅值的K个根对应的相位就是 波达方向估计值
• 在小样本数条件下,该算法较基本MUSIC算法性能要好
相干信源的DOA估计——前向平滑
• MUSIC算法实施的前提:到达天线阵的信号必须彼此独立才能保证输入协 方差矩阵满秩,对于彼此相关或相干的多个信号,无法分辨
8阵元,SNR=10dB,入射方向5、 30、40度
MUSIC算法改进
• 实施MUSIC算法要求样本数足够多、接收信噪比足够高,否则,DOA估计 分辨率会严重下降 • 最小范数算法:用 特征向量 表示接收信号协方差矩阵中噪声子空间 的线性组合,必定与信号子空间正交
• 对
施加约束条件,是其第一个元素为1,且范数最小,
概述
• 阵列天线应用:最初主要用于雷达、声纳、军事抗干扰通信等领 域,用来完成空间滤波和目标测向 • 20世纪90年代开始将阵列天线用于移动通信领域,利用数字信号
处理技术形成定向波束,以此提升系统容量 (空分复用)、扩大基
站覆盖范围、减小电磁污染,改善通信质量
• 阵列天线已成为新一代宽带无线移动通信研究的热点之一
系统响应,空域处理能获得方向图;时域滤波是对不同频率的信号进
行增强或抑制,空域滤波是对不同来向的信号进行增强或抑制
时域处理和空域处理具有对偶关系
概述
• 阵列天线:由一组各向同性的天线单元 (阵元)按照一定的空间结构
排列而成的天线系统 • 阵列信号处理:在空域分析和处理信号的一种手段,本质上是空域 滤波 • 作用:根据信号的来波方向 (direction of arrival, DOA)调整阵列的方 向图 (某些方向增强、某些方向减弱),跟踪期望信号,减少或消除 干扰信号,提高接收信干噪比
TDD方式(上下行工作频率相同):利用接收获得的加权向量,对不同终
端选择加权发送(分时形成指向期望用户的定向波束) FDD方式(上下行工作频率不同):利用导频检测信道特性,指导加权向 量更新(分时形成指向期望用户的定向波束) • 效用:获得空间分集,扩大覆盖、降低功率、提高容量;抵御远近效应
传统法
• 空间谱(功率与角度的关系):搜索谱峰获得DOA估计
• 存在问题:主波束太宽,要求信噪比高
8阵元,SNR=50dB,入射方向30度
8阵元,SNR=50dB,入射方向30、45度
传统法
② Capon最小方差法:针对多个辐射源,用一部分自由度形成波束, 另一部分自由度形成零陷 • 优化问题

扫描整个空间获得空间谱,通过寻找谱峰对应角度,即可获得信源的
DOA估计
MUSIC算法
Multiple Signal Classification
• 基本思想:对输入协方差矩阵进行特征值分解,获得信源数估计、
DOA估计、信号强度估计(1979年由Schmidt提出) • 阵元 M 个,信源 K 个 • 阵列输入信号
信号处理器结构:幅度加权、相位加权、幅相加权
信号处理算法:实现权值参数的自适应调整
抽头延迟线实现宽带复数加权 正交混合电路实现窄带复数加权
阵列信号处理基础
• 阵列天线在移动通信系统中的应用:一般用在基站,且上下行均形成定 向波束 上行接收:对各天线单元接收信号加权求和获得空间分集增益 下行发射:
,对于最小特征值部分:

重要关系 通过求取接收信号协方差矩阵最小特征值对应的特征向量,搜索与之正 交的导向向量,获得信号方向向量估计值。
MUSIC算法
噪声子空间对应于噪声特征向量矩阵
对于信号DOA ,应满足
MUSIC空间谱
信号相关矩阵
MUSIC算法
• MUSIC空间谱 不是任何意义 下的真实谱,可以理解为信号方向向量与噪声子空间之间的距离 • MUSIC算法的性能: • 对主特征值的估计误差 均值为零 • 对波达方向的估计误差 也服从渐进联合高斯分布, 服从渐进联合高斯分布,其
均匀园阵
相关主题