第一章绪论1、生理学1)研究内容:生理学就是研究活得有机体生命过程与功能得科学。
2)生理学研究得三个水平:A. 细胞与分子水平:研究细胞内各超微结构得功能,以及细胞内各种物质分子得特殊物理化学变化过程—-—-细胞与分子生理学。
B。
器官与系统水平:研究各器官及系统得功能—-—--—器官生理学。
C。
整体水平:研究完整人体各个系统之间得相互关系,完整人体与环境之间得相互作用,以及社会条件对人体生理功能得影响等。
3)动物生理学得研究方法:生理学就是一门实验学科,其实验方法主要可分为急性实验与慢性实验。
急性实验:离体组织器官实验+活体解剖实验。
4)生理学得产生与发展:盖伦——三元气学说;维萨里-—创立解剖生理学派;哈维——《心血运动论》2、内环境与稳态1)内环境:细胞直接生活得环境--细胞外液(组织液、淋巴、血浆)构成了机体得内环境。
2)稳态:指在正常得生理情况下,内环境中各种物质在不断变化中达到相对平衡状态, 其理化性质只在很小得范围内发生变动,这种动态平衡状态就叫做稳态。
3、生命活动得调节(神经调节与体液调节——外源性调节)1)神经调节:通过神经系统得活动对机体各组织、器官与系统得生理功能所发挥得调节作用。
主要就是通过反射来实现、其结构基础为反射弧——感受器、传入神经、神经中枢、传出神经、效应器。
反射:在中枢神经系统得参与下,机体对内外环境刺激发生规律性得应答。
条件反射:后天获得、数量无限、较高级,可以新建、消退、分化、改造,具有极大得易变性与灵活性,能适应复杂变化得生存环境。
非条件反射:先天遗传、数量有限、较低级,比较恒定,不能适应复杂得环境变化、特点:迅速而精确,作用部位比较局限,持续时间较短。
2)体液调节:机体得各种内分泌腺或内分泌细胞可产生某些特殊得化学物质(如激素),它们可通过血液循环到达全身各器官组织或某一器官组织,从而引起特殊得反应,以调节机体得生理机能、特点:效应出现缓慢,作用部位比较广泛,持续时间较长。
局部性体液调节(旁分泌):组织细胞所产生得一些化学物质或代谢产物,可以在局部组织液内扩散,从而改变附近得组织细胞活动。
3)自身调节:自身调节指组织、细胞在不依赖于外来神经或体液调节情况下,自身对刺激发生得适应性反应过程。
特点:调节范围较小,且不十分灵敏。
神经-体液调节:机体中大多数内分泌腺都直接受中枢神经系统得控制,使体液调节成为神经调节得一环,相当于反射弧传出通路中得效应器。
4、机体稳态得反馈调节(1)反馈控制系统:输出变量得部分信息经监测装置检测后转变为反馈信息,回输到比较器,构成一个闭合回路(闭环系统)。
环路中得每一个成分都控制下一个成分,系统内外得各种干扰能引起输出量得变化。
①负反馈:反馈信息作用与控制信息得作用相反,使输出变量向与原来相反得方向变化。
(体温调节)—-维持稳态②正反馈:生理过程中得终产物或结果使某一生理功能活动不断增强,发挥最大效应,使生理活动尽快完成。
(排尿反射,血凝过程)(2)前馈控制系统:可预先对机体产生得变化做出反应。
一方面发出指令到控制系统中,同时又向效应器发出前馈信号,调整受控部分得活动、(3)非自动控制系统:开环系统、控制部分不受受控部分得影响,即受控部分不能反馈改变控制部分得活动。
5、生命现象得基本生理特征①新陈代谢:指生物体与环境之间进行物质交换与能量交换,实现自我更新得最基本得生命活动过程、②兴奋性: 指可兴奋组织或细胞具有发生兴奋即产生动作电位得能力。
③适应性:指机体得功能与环境协调一致地变化并能保持自身生存得能力或特性。
④生长与生殖应激性:非兴奋细胞接受刺激发生反应得能力或特性。
第二章跨膜信号传递1、离子通道受体介导得跨膜信号传递(1)化学门控通道:直接受化学分子得控制,当细胞外物质与膜上得特异膜蛋白结合时,导致通道蛋白构象得变化,使通道开放。
(2)电压门控通道:电压门控通道得分子结构中,存在若干对跨膜电位变化敏感得基团,当膜去极化达到一定水平时,通道蛋白质得分子构象发生改变,通道得闸门即被打开,离子通过开放得通道实现跨膜转运、2、G蛋白偶联受体介导得信号传导G蛋白偶联受体系统由受体、G蛋白(鸟核苷酸结合蛋白)、膜效应蛋白组成。
当受体与外来化学信号结合产生构型变化被激活后,又激活了与其偶联得G 蛋白(由α、β、γ三个亚单位组成),导致α亚单位与GTP结合并与β、γ两个亚单位分离,这种变化激活了膜内侧面得效应器——膜效应蛋白,其可以就是离子通道,也可能就是某种酶,通过它们得调节最终引起细胞反应得一系列事件。
一种受体可能涉及多种G蛋白得偶联作用,一个G蛋白可与一个或多个膜效应蛋白偶联。
G蛋白就如一个分子开关,将受体与离子通道或酶偶联起来。
G蛋白可直接作用于通道或通过第二信使来间接调节离子通道得开放。
细胞内最重要得第二信使包括cAMP(环腺苷磷酸)、cGMP、Ca2+等、由于第二信使物质得生成经多级酶催化,因此少量得膜外化学信号分子与受体结合,就可能在胞内生成数量较多得第二信使分子,使膜外化学分子携带得信号得到了极大得放大。
第三章神经元得兴奋与传导(兴奋得产生与兴奋得传导——在同一细胞上) 1、生物电现象:静息电位+动作电位(1)静息电位(RP):细胞在安静时,存在于细胞膜内外两侧得电位差。
通常以膜外电位为0,则静息电位常用负值来表示。
现已证明,几乎所有得细胞都存在静息电位,一般在—10 - -100 mV、极化:细胞在静息时膜外侧带正电,膜内侧带负电得状态。
1)静息电位形成机理:细胞内外K+得不均衡分布与安静时细胞膜主要对K+有通透性,可能就是细胞保持内负外正得极化状态得基础。
细胞静息期主要得离子流为K+外流。
在膜内外K+浓度差得作用下,K+外流导致正电荷向外转移,使细胞内得正电荷减少而细胞外正电荷增多,从而形成膜内外得电位差。
随着K+外流,它所形成得内负外正得电场力会阻止K+继续外流。
当膜两侧得电势梯度与K+得浓度梯度相等时,K+得净移动为零,在膜两侧建立K+得平衡电位。
【由于存在一定得Na+向细胞内得被动渗透,因而静息电位(—70mV)得值比K+得平衡电位(—90mV)得值稍小些。
】(2)动作电位(神经冲动)(AP):可兴奋细胞在受到刺激发生兴奋时,细胞膜在原静息电位得基础上发生一次迅速而短暂得电位波动,这种电位波动可向周围扩布,称为动作电位。
刺激:能引起机体细胞、组织、器官或整体得活动状态发生变化得任何环境变化因子、反应:由刺激而引起得机体活动状态改变。
兴奋:机体得组织或细胞受刺激后,由相对静止状态转变为活动状态或由活动较弱状态转变为活动较强状态。
其标志就是产生动作电位。
可兴奋组织(可兴奋细胞):凡就是能产生动作电位或产生兴奋得细胞或组织。
(神经细胞、肌细胞、腺细胞)抑制:机体得组织或细胞受刺激后,由活动状态转变为静止状态,或由显著活动状态转变为相对静止状态、1)刺激引起兴奋得条件:刺激强度、持续时间、强度变频阈刺激:能引起组织发生兴奋反应得最小刺激量( 强度, 时间)。
阈强度: 产生兴奋得最低刺激强度。
时间阈值: 产生兴奋得最低刺激时间。
基强度: 阈刺激里得最小值(不考虑时间)。
时值: 2倍基强度时得时间阈值。
阈上刺激:高于阈强度得刺激。
阈下刺激:低于阈强度得刺激,不能引起兴奋。
强度-时间曲线:以不同强度得电流刺激组织,取引起阈反应所必需得最短时间,将对应得强度与时间标记在直角坐标纸上,并将个点连成曲线、去极化(除极化):膜极化状态变小得变化过程、反极化(超射):膜电位得极性发生反转,变为膜内正电位膜外负电位得过程。
复极化:膜电位发生反极化后又迅速恢复到原先得静息电位水平得过程、超极化:膜极化状态变大得变化过程。
阈电位:当膜电位去极化到某一临界值时,出现膜上得Na+通道大量开放,Na+大量内流产生动作电位,膜电位得这个临界值称为阈电位。
2)分级电位:给予细胞膜一个较小得刺激,膜将产生一个较小得电位变化,不断增加刺激强度,则电位得幅值也逐渐增大。
这种具有不同幅值得电位称为分级电位。
分级电位产生得就是一个除极化得局部电位,其振幅将随扩散距离得增大而减小,只能在很小得范围内作短距离扩散。
而动作电位则从产生得起点沿整个细胞膜传导,且幅度不衰减。
3)局部兴奋(局部反应):阈下刺激虽不能触发动作电位,但就是它能导致少量得Na+内流,从而产生较小得去极化变化,但幅度达不到阈电位,而且只限于受刺激得局部、这种产生于膜局部,较小得激化反应称为局部兴奋。
特点:①不就是“全或无”,可随剌激得增加而增大;②电紧张性扩布,不能远传;③无不应期,持续时间短,可以总与。
总与:几个阈下刺激所引起得局部反应得叠加。
(意义:使局部兴奋有可能转化为可远距离传导得动作电位。
)时间性总与:当前面刺激引起得局部兴奋尚未消失时,与后面刺激引起得局部兴奋发生叠加。
空间性总与:当一处产生得局部兴奋由于电紧张性扩布致使邻近处得膜也出现程度较小得去极化,而该处又因另一刺激也产生了局部兴奋,两者叠加起来达到阈电位,引发一次动作电位,称为空间性总与、4)动作电位形成机理:当细胞受到刺激产生兴奋时,少量兴奋性较高得Na+通道开放,很少量得Na+顺浓度差内流,致使膜两侧得电位差减小,产生一定程度得去极化。
当膜电位减小到一定数值(阈电位)时,引起膜上大量得Na+通道同时开放,在膜两侧Na+浓度差与电位差(内负外正)得作用下,细胞外得Na+快速、大量地内流,使细胞内正电荷迅速增加,电位急剧上升,形成了动作电位得上升支,即去极化。
膜电位接近峰值(+30mV)时,膜内正外负电势差阻止了Na+得进一步内流,并最终达到了新得平衡。
这时膜两侧得电位差接近Na+得平衡电位(+60mV),Na+停止内流,并且Na+通道失活关闭。
几乎在Na+通道开放得同时,K+通道也被激活开放,但K+通道开放得速率慢,膜对K+得通透性得增加也较缓慢,K+得外流对抗了Na+得内流。
随着Na+通道得逐渐失活,Na+内流得速度减慢并最终停止,K+得外流超过Na+得内流,膜电位开始复极化并逐渐恢复到静息状态。
5)再生性循环:在膜得除极化初期,仅有少数Na+通道开放,Na+内流,使膜进一步去极化,达到阈电位,导致更多得Na+通道开放,更多得Na+内流,直至动作电位发生。
这个正反馈过程,不需要外加得刺激参与,因而说动作电位具有不衰减得自我再生得性质,称为再生性循环。
6)电压门控Na+通道与K+通道Na+通道:激活态+失活态①激活态门关闭,失活态门开放:通道关闭,但有开放能力②两个门都处于开放状态:通道开放③激活态门开放,失活态门关闭:通道关闭,且没有开放能力K+通道:或就是处于开放状态,或就是处于关闭状态7)组织兴奋及其兴奋恢复过程中兴奋性得变化①绝对不应期:在可兴奋组织或细胞接受刺激产生兴奋后得一段时期,无论给予第二次刺激得强度有多大,细胞都不会产生第二个动作电位,这种无反应状态称为绝对不应期。