当前位置:文档之家› 第一章-量子论基础

第一章-量子论基础

第五章 近似方法一、概念与名词解释1. 斯塔克效应2. 跃迁概率3. 费米黄金规则4. 选择定则二、计算1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正.2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正.3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正.4. 设哈密顿量在能量表象中的矩阵是 ,a Eb b a E 0201⎪⎪⎭⎫ ⎝⎛++a 、b 是实数. (1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较.5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202*b *a b 01a 01>⎪⎪⎪⎪⎭⎫ ⎝⎛λλλλ, (1) 用简并微扰方法求能量至二级修正;(2) 求能量的准确值,并与(1)的结果比较.6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级修正.7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为, 1/2)a (a H ˆ0ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ˆ的作用,求体系的能级到二级近似. 已知升与降算符对0H ˆ的本征态|n>的作用为.1n n n a ;1n 1n n a -=++=+9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy. 若λ<<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 , bz ax y H'2+=求第一激发态的一级能量修正.13. 一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<λ=a)x (a/2 x/a)-2x(1a/2)x (0 x/a 2H'作用,求基态能量的一级修正. 14. 处于一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<<<=2a/3)x (a/3 V -a)x a/3,2a/3x (0 0H'1的作用,计算基态能量的一级修正. 15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰⎩⎨⎧<<<<=a)x (a/2 b a/2)x (0 b H'+-作用,求波函数至一级修正. 16. 一个粒子处在二维无限深势阱⎩⎨⎧∞<<=)( a)y x,(0 0y)V(x,其他中运动,现加上微扰 a),y x,xy(0H'≤≤λ=求基态能量和第一激发态的能量修正值.17. 粒子在如下势阱中运动, a)x 0,(xa)x (0 a x/a)/80sin(V(x)222⎩⎨⎧><∞≤≤μππ= -求其基态能量的一级近似.18. 粒子处于如下势阱中, a)X 0,(x a)x (a/2 a /80a/2)x (0 0V (x )222⎪⎩⎪⎨⎧><∞≤≤μπ<<= 求其能级的一级近似值.19. 自旋为ħ/2的粒子处于一维无限深方势阱(0<x<a)中,若其受到微扰⎩⎨⎧><≤≤πλ=a)x 0,(x0a)x (0 s ˆx/a)cos(2H'y 的作用,求基态能量至一级修正,其中λ为一小量.20. 两个自旋为ħ/2,固有磁矩算符分别为2211ˆˆˆˆσβ=μσα=μ和的粒子,处于均匀磁场k B B 0 =中,若粒子间的相互作用21ˆˆσ⋅σγ 可视为微扰,求体系能量的二级近似,其中α、β、γ为实常数.21. 类氢原子中,电子与原子核的库仑作用为U(r)=-Ze 2/r ,当核电荷增加e(从Z →Z+1),相互作用增加/r -e H'2=,试用微扰论求能量的一级修正并与严格解比较.22. 设氢原子处于均匀的弱电场k 0 ε=ε和弱磁场k B B 0 =中,不考虑自旋效应,用微扰论讨论其n=2的能级劈裂情况.23. 求氢原子n=3,简并度n 2=9时的斯塔克效应.24. 设在t=0时,电荷为e 的线性谐振子处于基态. 在t>0时起,附加一与谐振子振动方向相同的恒定外电场ε,求其处在任意态的概率.25. 一个自旋为ħ/2,磁矩为s ˆg ˆ=μ的粒子处于如下弱旋转磁场中 , k B j t)sin(B i t)cos(B B 00 +ω+ω=粒子与磁场的作用为 .B s ˆg ⋅-若粒子开始处于s z = ħ/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)= -g 2/r 3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以)ex p(-cr (r)2=φ为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为 , x /2p ˆH ˆ42x λ+μ=以/2)x ex p(-a a/(x )22π=φ为试探波函数,a 为变分参数,求其基态能量.31. 取尝试波函数为 ,Ce 2-ax C 为归一化常数,a 是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数C.32. 设粒子在中心力场V(r)= -Ar n (n 为整数)中运动,选R(r)=Nexp(-βr)为试探波函数,求其基态能量. 进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用Φ=exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f 为变分参数,求势场为V(x)=g 2(x 2-1)2/2的基态能量,其中g 是个很大的常数.三、证明1. 在无简并的微扰论中,证明(1)n(1)n (1)n (3)n (2)n (1)n (0)n (1)n (0)n (0)n (1)n(0)n (0)n (0)n E -W ˆE E E E H ˆE E H ˆφφ=++=φ+φφ+=φφ2. 一维运动的体系,定义从|m>态跃迁到|n>态相应的振子强度为, /m x n 2m f 2nm nm ω= m 是粒子质量,求证:∑=n nm 1f3. 设体系在t=0时处于基态|0>,若长时间加上微扰),(x )ex p(-t/F ˆt)(x ,Wˆτ=证明该体系处于另一能量本征态|1>的概率为222012/)E -(E 1Fˆ0τ+四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为M. 在棒的两端分别有电荷+Q 和-Q.(1) 写出体系的哈密顿量、本征函数和本征值;(2) 如果在转动平面内存在一电场强度为E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?(3) 如果这个电场很强,求基态的近似波函数和相应的能量值.2. 对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是. R)(r R)(r 0V ⎩⎨⎧≥∞<=相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是)1/a z )/b y (x ( 0V 22222el ,(其他地方)内在⎩⎨⎧∞=++=其中a ≈R(1+2β/3), b ≈R(1-β/3),且β<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核基态能量的变化.(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H 0+H'描述,其中H'=i λ[A,H 0]是一个加在非微扰哈密顿量H 0上的微扰,A 是个厄米算符,λ是个实数.设B 是另一个厄米算子,而且C=i[B,A].(1) 已知A 、B 、C 在无微扰(非简并)基态的平均值为<A>0、<B>0、<C>0.当微扰加入时,求B 在微扰后的基态上的平均值至λ的第一级;(2) 将这个结果用到如下三维问题上:.x H',x m 212m p H 331i 2i 22i 0λ=⎪⎪⎭⎫ ⎝⎛ω+=∑=计算x i 在基态的平均值<x i >(i=1,2,3)至λ的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向. 电场沿z 轴方向,可视为均匀电场. 设电容器突然充电,然后放电,电场随时间的变化是).( 0)(t e 0)(t0(t)t/-0为常数τ⎩⎨⎧>ε<=ετ求时间充分长后,氢原子跃迁到2s 态和2p 态的概率.5. 考虑势U=g|x|的能级.(1) 用量纲分析,推导本征值和参数(质量m 、ħ、g)的关系;(2) 用尝试波函数φ=C θ(x+a) θ(a-x)(1-|x|/a)对基态能量作变分计算;0)(x 10)(x 0(x)这里C、a是复数⎪⎪⎭⎫ ⎝⎛⎩⎨⎧><=θ, (3) 为什么φ=C θ(x+C) θ(a-x)不是一个好的尝试波函数?(4) 如果要求第一激发态能量,你将如何处理?6. 一个质量为m的粒子在汤川势U(r)= -λe-μr/r中运动,用变分法,取尝试波函数φ=e-ar,问λ的临界值λ0等于多少时,能使得λ<λ0无束缚态,λ>λ0有束缚态?7. 介子一般可看成夸克和反夸克)q(q的束缚态. 考虑s态介子,设夸克质量为mq,束缚qq和的势U=A/r+Br,A<0,B>0.(1) 选用类似于氢原子基态波函数的φ=e-r/a作为尝试波函数,用变分法求基态能量(在用变分法决定a的方程中,可近似取A=0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。

相关主题