当前位置:文档之家› 20182019高中数学第2章圆锥曲线与方程疑难规律方法学案苏教版选修21

20182019高中数学第2章圆锥曲线与方程疑难规律方法学案苏教版选修21

第2章 圆锥曲线与方程1 利用椭圆的定义解题椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值例1 线段AB =4,PA +PB =6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是________.解析 由于PA +PB =6>4=AB ,故由椭圆定义知P 点的轨迹是以M 为原点,A ,B 为焦点的椭圆,且a =3,c =2,∴b =a 2-c 2= 5.于是PM 的长度的最小值是b = 5. 答案52.求动点坐标例2 椭圆x 29+y 225=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________.解析 设椭圆上的动点为P ,由椭圆的定义可知PF 1+PF 2=2a =10,所以PF 1·PF 2≤⎝⎛⎭⎪⎫PF 1+PF 222=⎝ ⎛⎭⎪⎫1022=25,当且仅当PF 1=PF 2时取等号.由⎩⎪⎨⎪⎧PF 1+PF 2=10,PF 1=PF 2,解得PF 1=PF 2=5=a ,此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0)点评 由椭圆的定义可得“PF 1+PF 2=10”,即两个正数PF 1,PF 2的和为定值,结合基本不等式可求PF 1,PF 2乘积的最大值,结合图形可得所求点P 的坐标.3.求焦点三角形面积例3 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.解 由已知,得a =2,b =3, 所以c =a 2-b 2=1,F 1F 2=2c =2. 在△PF 1F 2中,由余弦定理,得PF 22=PF 21+F 1F 22-2PF 1·F 1F 2·cos120°,即PF 22=PF 21+4+2PF 1,① 由椭圆定义,得PF 1+PF 2=4, 即PF 2=4-PF 1.② 将②代入①,得PF 1=65.所以S △PF 1F 2=12PF 1·F 1F 2·sin120°=12×65×2×32=335, 即△PF 1F 2的面积是335.点评 在△PF 1F 2中,由椭圆的定义及余弦定理可得关于PF 1,PF 2的方程组,消去PF 2可求PF 1. 从以上问题,我们不难发现,凡涉及椭圆上的点及椭圆焦点的问题,我们应首先考虑利用椭圆的定义求解.2 如何求椭圆的离心率1.由椭圆的定义求离心率例1 以椭圆的焦距为直径并过两焦点的圆,交椭圆于4个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.解析 如图所示,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,由题意知∠F 1AF 2=90°,∠AF 2F 1=60°.∴AF 2=c ,AF 1=2c ·sin60°=3c .∴AF 1+AF 2=2a =(3+1)c . ∴e =c a=23+1=3-1.答案3-1点评 本题利用了圆及正六边形的几何性质,并结合椭圆的定义,化难为易,使问题简单解决.2.解方程(组)求离心率例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,则椭圆的离心率e =________.解析 如图所示,直线AB 的方程为x -a +yb=1,即bx -ay +ab =0.∵点F 1(-c,0)到直线AB 的距离为b7,∴b7=|-bc +ab |a 2+b 2,∴7|a -c |=a 2+b 2,即7a 2-14ac +7c 2=a 2+b 2. 又∵b 2=a 2-c 2,整理,得5a 2-14ac +8c 2=0. 两边同除以a 2并由e =c a知,8e 2-14e +5=0, 解得e =12或e =54(舍去).答案 123.利用数形结合求离心率例3 在平面直角坐标系中,已知椭圆x2a2+y2b2=1(a>b>0),圆O的半径为a,过点P⎝⎛⎭⎪⎫a2c,0作圆O的两条切线,且这两条切线互相垂直,则离心率e=________.解析如图所示,切线PA,PB互相垂直,PA=PB.又OA⊥PA,OB⊥PB,OA=OB,则四边形OAPB是正方形,故OP=2OA,即a2c=2a,∴e=ca=22.答案224.综合类例4 设M为椭圆x2a2+y2b2=1上一点,F1,F2为椭圆的左、右焦点,如果∠MF1F2=75°,∠MF2F1=15°,求椭圆的离心率.解由正弦定理得2csin90°=MF1sin15°=MF2sin75°=MF1+MF2sin15°+sin75°=2asin15°+sin75°,∴e=ca=1sin15°+cos15°=12sin60°=63.点评此题可推广为若∠MF1F2=α,∠MF2F1=β,则椭圆的离心率e=cosα+β2cosα-β2.3 活用双曲线定义妙解题在解双曲线中的有关求动点轨迹、离心率、最值等问题时,若能灵活应用双曲线的定义,能把大题化为小题,起到事半功倍的作用.下面举例说明. 1.求动点轨迹例1 动圆C 与两定圆C 1:x 2+(y -5)2=1和圆C 2:x 2+(y +5)2=16都外切,求动圆圆心C 的轨迹方程.解 设动圆圆心为C (x ,y ),半径为r , 因为动圆C 与两定圆相外切, 所以⎩⎪⎨⎪⎧CC 1=r +1,CC 2=r +4,即CC 2-CC 1=3<C 1C 2=10,所以点C 的轨迹是以C 1(0,5),C 2(0,-5)为焦点的双曲线的上支,且a =32,c =5,所以b 2=914.故动圆圆心C 的轨迹方程为4y 29-4x 291=1⎝ ⎛⎭⎪⎫y ≥32. 点评 依据动圆与两定圆外切建立关系式,可得到CC 2-CC 1=3<C 1C 2,从而判断出C 的轨迹是双曲线的一支,最后求出a ,b 即可写出轨迹方程,这里一定要注意所求的轨迹是双曲线的一支还是两支. 2.求焦点三角形的周长例2 过双曲线x 216-y 29=1左焦点F 1的直线与左支交于A ,B 两点,且弦AB 长为6,则△ABF 2(F 2为右焦点)的周长是________.解析 由双曲线的定义知AF 2-AF 1=8,BF 2-BF 1=8, 两式相加得AF 2+BF 2-(AF 1+BF 1)=AF 2+BF 2-AB =16, 从而有AF 2+BF 2=16+6=22,所以△ABF 2的周长为AF 2+BF 2+AB =22+6=28. 答案 28点评 与焦点有关的三角形周长问题,常借助双曲线的定义解决,注意解决问题时的拼凑技巧.3.最值问题例3 已知F 是双曲线x 23-y 2=1的右焦点,P 是双曲线右支上一动点,定点M (4,2),求PM+PF 的最小值.解 设双曲线的左焦点为F ′, 则F ′(-2,0), 由双曲线的定义知:PF ′-PF =2a =23,所以PF =PF ′-23, 所以PM +PF =PM +PF ′-23,要使PM +PF 取得最小值,只需PM +PF ′取得最小值,由图可知,当P 、F ′、M 三点共线时,PM +PF ′有最小值MF ′=210,故PM +PF 的最小值为210-2 3.点评 本题利用双曲线的定义对F 的位置进行转换,然后再根据共线易求得最小值.另外同学们不妨思考一下:(1)若将M 坐标改为M (1,1),其他条件不变,如何求解呢?(2)若P 是双曲线左支上一动点,如何求解呢? 4.求离心率范围例4 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,试求该双曲线离心率的取值范围. 解 因为PF 1=4PF 2,点P 在双曲线的右支上, 所以设PF 2=m ,则PF 1=4m ,由双曲线的定义,得PF 1-PF 2=4m -m =2a , 所以m =23a .又PF 1+PF 2≥F 1F 2, 即4m +m ≥2c ,所以m ≥25c ,即23a ≥25c ,所以e =c a ≤53.又e >1,所以双曲线离心率的取值范围为⎝ ⎛⎦⎥⎤1,53.点评 本题利用双曲线的定义及三角形的两边之和与第三边之间的关系建立了关于双曲线基本量a ,c 的不等关系,使问题得以巧妙地转化、获解.4 抛物线的焦点弦例1 如图所示,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦.设A (x A ,y A ),B (x B ,y B ),AB 的中点M (x 0,y 0),过A ,M ,B 分别向抛物线的准线l 作垂线,垂足分别为A 1,M 1,B 1,则有以下重要结论:(1)以AB 为直径的圆必与准线相切;(2)AB =2⎝ ⎛⎭⎪⎫x 0+p 2(焦点弦长与中点坐标的关系);(3)AB =x A +x B +p ;(4)A ,B 两点的横坐标之积,纵坐标之积为定值,即x A x B =p 24,y A y B =-p 2;(5)A 1F ⊥B 1F ;(6)A ,O ,B 1三点共线; (7)1FA +1FB =2p.以下以第(7)条结论为例证明: 证明 当直线AB 的斜率不存在, 即与x 轴垂直时,FA =FB =p , ∴1FA +1FB =1p +1p =2p.当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝⎛⎭⎪⎫x -p 2,并代入y 2=2px ,∴⎝⎛⎭⎪⎫kx -kp 22=2px ,即k 2x 2-p (2+k 2)x +k 2p 24=0.由A (x A ,y A ),B (x B ,y B ),则x A +x B =p (k 2+2)k 2,x A x B =p 24.∵FA =x A +p 2,FB =x B +p2, ∴FA +FB =x A +x B +p ,FA ·FB =⎝ ⎛⎭⎪⎫x A +p 2⎝ ⎛⎭⎪⎫x B +p 2=x A x B +p 2(x A +x B )+p 24=p2(x A +x B +p ). ∴FA +FB =FA ·FB ·2p ,即1FA +1FB =2p.点评 该结论是抛物线过焦点的弦所具有的一个重要性质,解题时,不可忽视AB ⊥x 轴的情况.例2 设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|=________.解析 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又F (1,0). 由FA →+FB →+FC →=0知(x 1-1)+(x 2-1)+(x 3-1)=0, 即x 1+x 2+x 3=3,|FA →|+|FB →|+|FC →|=x 1+x 2+x 3+32p =6.答案 65 求曲线方程的常用方法曲线方程的求法是解析几何的重要内容和高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路和方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件和图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现将圆形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2=4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E .(1)证明曲线E 是椭圆,并写出当a =2时该椭圆的标准方程;(2)设直线l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈⎣⎢⎡⎦⎥⎤12,32,求点Q 的纵坐标的取值范围.解 (1)依题意,直线m 为线段AM 的垂直平分线, ∴NA =NM .∴NC +NA =NC +NM =CM =2a >2=AC ,∴N 的轨迹是以C ,A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由(1)知a 2-b 2=1.又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+yb =1,即bx -y +b =0.设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称,∴⎩⎪⎨⎪⎧y x -1·b =-1,b ·x +12-y2+b =0,消去x 得y =4bb 2+1. ∵离心率e ∈⎣⎢⎡⎦⎥⎤12,32,∴14≤e 2≤34,即14≤1a 2≤34,∴43≤a 2≤4.∴43≤b 2+1≤4,即33≤b ≤3, ∵y =4b b 2+1=4b +1b≤2,当且仅当b =1时取等号. 又当b =3时,y =3;当b =33时,y = 3.∴3≤y ≤2. ∴点Q 的纵坐标的取值范围是[3,2].2.直接法若题设条件有明显的等量关系,或者可运用平面几何的知识推导出等量关系,则可通过“建系、设点、列式、化简、证明”五个步骤直接求出动点的轨迹方程,这种“五步法”可称为直接法.例2 已知直线l 1:2x -3y +2=0,l 2:3x -2y +3=0.有一动圆M (圆心和半径都在变动)与l 1,l 2都相交,并且l 1,l 2被截在圆内的两条线段的长度分别是定值26,24.求圆心M 的轨迹方程.解 如图,设M (x ,y ),圆半径为r ,M 到l 1,l 2的距离分别是d 1,d 2,则d 21+132=r 2,d 22+122=r 2, ∴d 22-d 21=25, 即⎝⎛⎭⎪⎫|3x -2y +3|132-⎝ ⎛⎭⎪⎫|2x -3y +2|132=25, 化简得圆心M 的轨迹方程是(x +1)2-y 2=65.点评 若动点运动的规律是一些几何量的等量关系,则常用直接法求解,即将这些关系直接转化成含有动点坐标x ,y 的方程即可. 3.待定系数法若已知曲线(轨迹)的形状,求曲线(轨迹)的方程时,可由待定系数法求解.例3 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OFA =23,求椭圆的方程.解 椭圆的长轴长为6,cos ∠OFA =23,所以点A 不是长轴的顶点,是短轴的顶点, 所以OF =c ,AF =OA 2+OF 2=b 2+c 2=a =3,c 3=23,所以c =2,b 2=32-22=5,故椭圆的方程为x 29+y 25=1或x 25+y 29=1.4.相关点法(或代入法)如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立某种关系,借助于点P 的运动轨迹便可得到点Q 的运动轨迹.例4 如图所示,从双曲线x 2-y 2=1上一点Q 引直线l :x +y =2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.分析 设P (x ,y ),因为P 是QN 的中点,为此需用P 点的坐标表示Q 点的坐标,然后代入双曲线方程即可.解 设P 点坐标为(x ,y ),双曲线上点Q 的坐标为(x 0,y 0), ∵点P 是线段QN 的中点, ∴N 点的坐标为(2x -x 0,2y -y 0).又点N 在直线x +y =2上,∴2x -x 0+2y -y 0=2, 即x 0+y 0=2x +2y -2.① 又QN ⊥l ,∴k QN =2y -2y 02x -2x 0=1,即x 0-y 0=x -y .②由①②,得x 0=12(3x +y -2),y 0=12(x +3y -2).又∵点Q 在双曲线上,∴14(3x +y -2)2-14(x +3y -2)2=1. 化简,得⎝ ⎛⎭⎪⎫x -122-⎝ ⎛⎭⎪⎫y -122=12.∴线段QN 的中点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -122-⎝ ⎛⎭⎪⎫y -122=12. 点评 本题中动点P 与点Q 相关,而Q 点的轨迹确定,所以解决这类问题的关键是找出P ,Q 两点坐标间的关系,用相关点法求解.5.参数法有时求动点满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点的坐标(x ,y )中的x ,y 分别随另一个变量的变化而变化,我们可以设这个变量为参数,建立轨迹的参数方程,这种方法叫做参数法.例5 已知点P 在直线x =2上移动,直线l 通过原点且与OP 垂直,通过点A (1,0)及点P 的直线m 和直线l 交于点Q ,求点Q 的轨迹方程. 解 如图,设OP 的斜率为k ,则P (2,2k ).当k ≠0时, 直线l 的方程:y =-1kx ,①直线m 的方程:y =2k (x -1).②联立①②消去k 得2x 2+y 2-2x =0 (x ≠1).当k =0时,点Q 的坐标(0,0)也满足上式,故点Q 的轨迹方程为2x 2+y 2-2x =0(x ≠1).6 解析几何中的定值与最值问题1.定点、定值问题对于解析几何中的定点、定值问题,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.例1 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A ,B 两点,OA →+OB →与a =(3,-1)共线.设M 为椭圆上任意一点,且OM →=λOA →+μOB → (λ,μ∈R ),求证:λ2+μ2为定值.证明 ∵M 是椭圆上任意一点,若M 与A 重合, 则OM →=OA →,此时λ=1,μ=0,∴λ2+μ2=1,现在需要证明λ2+μ2为定值1.设椭圆方程为x 2a 2+y 2b2=1(a >b >0),A (x 1,y 1),B (x 2,y 2),AB 的中点为N (x 0,y 0),∴⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y 22b 2=1,②①-②得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b2=0, 即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=-b 2x 0a 2y 0, 又∵k AB =y 1-y 2x 1-x 2=1,∴y 0=-b 2a 2x 0.∴直线ON 的方向向量为ON →=⎝ ⎛⎭⎪⎫1,-b 2a 2,∵ON →∥a ,∴13=b 2a2.∵a 2=3b 2,∴椭圆方程为x 2+3y 2=3b 2, 又直线方程为y =x -c .联立⎩⎪⎨⎪⎧y =x -c ,x 2+3y 2=3b 2,得4x 2-6cx +3c 2-3b 2=0.∴x 1+x 2=32c ,x 1x 2=3c 2-3b 24=38c 2.又设M (x ,y ),则由OM →=λOA →+μOB →,得⎩⎪⎨⎪⎧x =λx 1+μx 2,y =λy 1+μy 2,代入椭圆方程整理得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2.又∵x 21+3y 21=3b 2,x 22+3y 22=3b 2,x 1x 2+3y 1y 2=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0, ∴λ2+μ2=1,故λ2+μ2为定值.例2 已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点. 解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0,∴(mt )2=1, 由题意知mt <0,∴mt =-1,满足②,得l 的方程为x =ty +1,过定点(1,0),即Q 为定点. 2.最值问题解决圆锥曲线中的最值问题,一般有两种方法:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来解非常巧妙;二是代数法,将圆锥曲线中的最值问题转化为函数问题(即根据条件列出所求的目标函数),然后根据函数的特征选用参数法、配方法、判别式法、三角有界法、函数单调法及基本不等式法等,求解最大或最小值.例3 已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则PF +PA的最小值为________.解析 设右焦点为F ′,由题意可知F ′坐标为(4,0),根据双曲线的定义,PF -PF ′=4,∴PF +PA =4+PF ′+PA ,∴要使PF +PA 最小,只需PF ′+PA 最小即可,PF ′+PA 最小需P ,F ′,A 三点共线,最小值即4+F ′A =4+9+16=4+5=9.答案 9点评 “化曲为直”求与距离有关的最值是平面几何中一种巧妙的方法,特别是涉及圆锥曲线上动点与定点和焦点距离之和的最值问题常用此法.例4 已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 设动点P 的坐标为(x ,y ), 由题意有(x -1)2+y 2-|x |=1. 化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0 (x <0).如图,由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0,Δ=(2k 2+4)2-4k 4>0.设A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是上述方程的两个实根, 于是x 1+x 2=2+4k2,x 1x 2=1.因为l 1⊥l 2,所以l 2的斜率为-1k.设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1. 故AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB → =|AF →|·|FB →|+|FD →|·|EF →| =(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+⎝⎛⎭⎪⎫2+4k2+1+1+(2+4k 2)+1=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2k 2·1k2=16.当且仅当k 2=1k2,即k =±1时,AD →·EB →取得最小值16.7 圆锥曲线中存在探索型问题存在探索型问题作为探索性问题之一,具备了内容涉及面广、重点题型丰富等命题要求,方便考查分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱.圆锥曲线存在探索型问题是指在给定题设条件下是否存在某个数学对象(数值、性质、图形)使某个数学结论成立的数学问题.本节仅就圆锥曲线中的存在探索型问题展开,帮助复习. 1.常数存在型问题例1 直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在实数a ,使A ,B 关于直线y =2x 对称?请说明理由.分析 先假设实数a 存在,然后根据推理或计算求出满足题意的结果,或得到与假设相矛盾的结果,从而否定假设,得出某数学对象不存在的结论. 解 设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设A (x 1,y 1),B (x 2,y 2),则AB 中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.依题设有y 1+y 22=2·x 1+x 22,即y 1+y 2=2(x 1+x 2),①又A ,B 在直线y =ax +1上,∴y 1=ax 1+1,y 2=ax 2+1, ∴y 1+y 2=a (x 1+x 2)+2,②由①②,得2(x 1+x 2)=a (x 1+x 2)+2, 即(2-a )(x 1+x 2)=2,③联立⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0,∴x 1+x 2=2a3-a2,④ 把④代入③,得(2-a )·2a3-a2=2, 解得a =32,经检验知满足Δ=4a 2+8(3-a 2)>0,∴k AB =32,而k l =2,∴k AB ·k l =32×2=3≠-1.故不存在满足题意的实数a . 2.点存在型问题例2 在平面直角坐标系中,已知圆心在第二象限,半径为22的圆与直线y =x 相切于原点O ,椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.分析 假设满足条件的点Q 存在,根据其满足的几何性质,求出Q 的坐标,则点Q 存在,若求不出Q 的坐标,则点Q 就不存在. 解 (1)由题意知圆心在y =-x 上, 设圆心的坐标是(-p ,p )(p >0), 则圆的方程可设为(x +p )2+(y -p )2=8, 由于O (0,0)在圆上,∴p 2+p 2=8,解得p =2, ∴圆C 的方程为(x +2)2+(y -2)2=8.(2)椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10,由椭圆的定义知2a =10,a =5,∴椭圆右焦点为F (4,0).假设存在异于原点的点Q (m ,n )使QF =OF ,则有⎩⎪⎨⎪⎧(m +2)2+(n -2)2=8,(m -4)2+n 2=16且m 2+n 2≠0,解得⎩⎪⎨⎪⎧m =45,n =125,故圆C 上存在满足条件的点Q ⎝ ⎛⎭⎪⎫45,125.3.直线存在型问题例3 试问是否能找到一条斜率为k (k ≠0)的直线l 与椭圆x 23+y 2=1交于两个不同的点M ,N ,且使M ,N 到点A (0,1)的距离相等,若存在,试求出k 的取值范围;若不存在,请说明理由.分析 假设满足条件的直线l 存在,由平面解析几何的相关知识求解.解 设直线l :y =kx +m 为满足条件的直线,再设P 为MN 的中点,欲满足条件,只要AP ⊥MN 即可. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(1+3k 2)x 2+6mkx +3m 2-3=0.设M (x 1,y 1),N (x 2,y 2),P (x P ,y P ),则x P =x 1+x 22=-3mk 1+3k 2,y P =kx P +m =m 1+3k2, ∴k AP =3k 2-m +13mk.∵AP ⊥MN ,∴3k 2-m +13mk =-1k (k ≠0),故m =-3k 2+12.由Δ=36m 2k 2-4(1+3k 2)(3m 2-3)=9(1+3k 2)(1-k 2)>0,得-1<k <1,且k ≠0. 故当k ∈(-1,0)∪(0,1)时,存在满足条件的直线l .8 圆锥曲线中的易错点剖析1.求轨迹方程时,动点坐标设法不当而致误例1 长为a 的线段AB ,两端点分别在两坐标轴上移动,求线段AB 中点P 的轨迹方程.错解 如图所示,设A (0,y ),B (x,0).由中点坐标公式可得P 点坐标为⎝ ⎛⎭⎪⎫x 2,y2,连结OP ,由直角三角形斜边上的中线性质有OP =12AB =12a .故⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫a 22,即所求的轨迹方程为x 2+y 2=a 2.错因分析 求轨迹方程,即求轨迹上任意一点的坐标所满足的方程,并检验以方程的解为坐标的点是否都是轨迹上的点,因此,应设轨迹上任意一点的坐标为(x ,y ).上述解法是因为动点坐标设的不对,即运用方法不当而导致错误. 正解 设中点P (x ,y ),A (0,m ),B (n,0), 则m 2+n 2=a 2,x =n 2,y =m2,于是所求轨迹方程为x 2+y 2=14a 2.2.忽视定义中的条件而致误例2 平面内一点M 到两定点F 1(0,-4),F 2(0,4)的距离之和为8,则点M 的轨迹为________. 错解 根据椭圆的定义,点M 的轨迹为椭圆,故填椭圆.错因分析 在椭圆的定义中,点M 到两定点F 1,F 2的距离之和必须大于两定点的距离,即MF 1+MF 2>F 1F 2,亦即2a >2c .而本题中MF 1+MF 2=F 1F 2,所以点M 的轨迹不是椭圆,而是线段F 1F 2. 正解 因为点M 到两定点F 1,F 2的距离之和为F 1F 2,所以点M 的轨迹是线段F 1F 2. 答案 线段3.忽视标准方程的特征而致误例3 设抛物线y =mx 2(m ≠0)的准线与直线y =1的距离为3,求抛物线的标准方程. 错解 抛物线y =mx 2 (m ≠0)的准线方程为y =-m4.又与直线y =1的距离为3的直线为y =-2或y =4. 故-m 4=-2或-m4=4.∴m =8或m =-16.∴抛物线的标准方程为y =8x 2或y =-16x 2.错因分析 错解忽视了抛物线标准方程中的系数,应位于一次项前这个特征,故本题应先化为x 2=1my 的形式,再求解.正解 由于y =mx 2 (m ≠0)可化为x 2=1my ,其准线方程为y =-14m .由题意知-14m =-2或-14m =4,解得m =18或m =-116.则所求抛物线的标准方程为x 2=8y 或x 2=-16y .4.求解抛物线标准方程时,忽略对焦点位置讨论致误例4 抛物线的焦点F 在x 轴上,点A (m ,-3)在抛物线上,且AF =5,求抛物线的标准方程.错解一 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以抛物线方程可设为y 2=2px (p >0). 设点A 到准线的距离为d ,则d =AF =p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p2+m =5,解得⎩⎪⎨⎪⎧p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12.所以抛物线方程为y 2=2x 或y 2=18x .错解二 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以当m >0时,点A 在第四象限,抛物线方程可设为y 2=2px (p >0).设点A 到准线的距离为d ,则d =AF =p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧ p =1,m =92或⎩⎪⎨⎪⎧ p =9,m =12. 所以抛物线方程为y 2=2x 或y 2=18x . 当m <0时,点A 在第三象限, 抛物线方程可设为y 2=-2px (p >0), 设点A 到准线的距离为d ,则d =AF =p 2+m , 所以⎩⎪⎨⎪⎧ (-3)2=-2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧p =5+34,m =5-342或⎩⎪⎨⎪⎧ p =5-34,m =5+342(舍去). 所以抛物线方程为y 2=-2(5+34)x .综上所述,抛物线方程为y 2=-2(5+34)x 或y 2=2x 或y 2=18x .错因分析 当抛物线的焦点位置无法确定时,需分类讨论.正解 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上,所以当m >0时,点A 在第四象限,抛物线方程可设为y 2=2px (p >0),设点A 到准线的距离为d ,则d =AF =p 2+m ,所以⎩⎪⎨⎪⎧ (-3)2=2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧ p =1,m =92或⎩⎪⎨⎪⎧ p =9,m =12, 所以抛物线方程为y 2=2x 或y 2=18x .当m <0时,点A 在第三象限,抛物线的方程可设为y 2=-2px (p >0),设A 到准线的距离为d ,则d =AF =p 2-m , 所以⎩⎪⎨⎪⎧ (-3)2=-2pm ,p 2-m =5,解得⎩⎪⎨⎪⎧ p =1,m =-92或⎩⎪⎨⎪⎧ p =9,m =-12. 所以抛物线方程为y 2=-2x 或y 2=-18x .综上所述,抛物线方程为y2=-2x或y2=-18x或y2=2x或y2=18x.9 圆锥曲线中的数学思想方法1.方程思想方程思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或解方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.本章中,方程思想的应用最为广泛.例1 已知直线y =-12x +2和椭圆x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,且a =2b ,若AB =25,求椭圆的方程.解 由⎩⎪⎨⎪⎧y =-12x +2,x 24b 2+y 2b 2=1消去y 并整理得x 2-4x +8-2b 2=0, Δ=16-4(8-2b 2)>0. 设A (x 1,y 1),B (x 2,y 2), 则由根与系数的关系得x 1+x 2=4,x 1x 2=8-2b 2. ∵AB =25,∴(x 1-x 2)2+(y 1-y 2)2=25, ∴1+14·(x 1+x 2)2-4x 1x 2=25, 即52·16-4(8-2b 2)=25, 解得b 2=4,故a 2=4b 2=16.∴所求椭圆的方程为x 216+y 24=1. 2.函数思想很多与圆锥曲线有关的问题中的各个数量在运动变化时,都是相互联系、相互制约的,它们之间构成函数关系.这类问题若用函数思想来分析、寻找解题思路,会有很好的效果.一些最值问题常用函数思想,运用根与系数的关系求弦的中点和弦长问题,是经常使用的方法. 例2 若点(x ,y )在x 24+y 2b2=1(b >0)上运动,求x 2+2y 的最大值. 解 ∵x 24+y 2b 2=1(b >0),∴x 2=4⎝ ⎛⎭⎪⎫1-y 2b 2≥0, 即-b ≤y ≤b .∴x 2+2y =4⎝ ⎛⎭⎪⎫1-y 2b 2+2y =-4y 2b 2+2y +4=-4b 2⎝ ⎛⎭⎪⎫y -b 242+4+b 24.当b 24≤b ,即0<b ≤4时,若y =b 24,则x 2+2y 取得最大值,其最大值为4+b 24;当b 24>b ,即b >4时,若y =b ,则x 2+2y 取得最大值,其最大值为2b .综上所述,x 2+2y 的最大值为⎩⎪⎨⎪⎧ 4+b 24,0<b ≤4,2b ,b >4.3.转化和化归思想 在解决圆锥曲线的综合问题时,经常利用转化和化归思想.转化题中的已知条件和所求,真正化归为直线和圆锥曲线的基本问题.这里的转化和化归非常关键,没有转化和化归,就很难找到解决问题的途径和方法.例3 如图所示,已知椭圆x 224+y 216=1,直线l :x =12,P 是l 上任意一点,射线OP 交椭圆于点R ,又点Q 在线段OP 上,且满足OQ ·OP =OR 2,当点P 在l 上运动时,求点Q 的轨迹方程.解 设P (12,y P ),R (x R ,y R ),Q (x ,y ),∠POx =α.∵OR 2=OQ ·OP ,∴⎝ ⎛⎭⎪⎫OR cos α2=OQ cos α·OP cos α. 由题意知x R >0,x >0,∴x 2R =x ·12.①又∵O ,Q ,R 三点共线,∴k OQ =k OR ,即y x =y R x R.②由①②得y 2R =12y 2x.③ ∵点R (x R ,y R )在椭圆x 224+y 216=1上,∴x 2R 24+y 2R 16=1.④ 由①③④得2(x -1)2+3y 2=2(x >0),∴点Q 的轨迹方程是2(x -1)2+3y 2=2(x >0).4.分类讨论思想本章中,涉及的字母参数较多,同时圆锥曲线的焦点可能在x 轴上,也可能在y 轴上,所以必须要注意分类讨论.例4 求与双曲线x 24-y 2=1有共同的渐近线且焦距为10的双曲线的方程. 分析 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0),将λ分为λ>0,λ<0两种情况进行讨论. 解 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0), 即x 24λ-y 2λ=1(λ≠0). 当λ>0时,c 2=4λ+λ=5λ=25,即λ=5,∴所求双曲线的方程为x 220-y 25=1. 当λ<0时,c 2=(-4λ)+(-λ)=-5λ=25,即λ=-5,∴所求双曲线的方程为y 25-x 220=1. 综上所述,所求双曲线的方程为x 220-y 25=1或y 25-x 220=1. 5.数形结合思想利用数形结合思想,可以解决某些最值、轨迹、参数范围等问题. 例5 在△ABC 中,BC 边固定,顶点A 在移动,设BC =m ,当三个角满足条件|sin C -sin B |=12|sin A |时,求顶点A 的轨迹方程. 解 以BC 的中点O 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,如图所示.则B ⎝ ⎛⎭⎪⎫-m 2,0,C ⎝ ⎛⎭⎪⎫m 2,0. 设点A 坐标为(x ,y ),由题设,得|sin C -sin B |=12|sin A |. 根据正弦定理,得|AB -AC |=m 2<m =BC . 可知点A 在以B ,C 为焦点的双曲线上.2a =m 2,∴a =m 4. 又c =m 2,∴b 2=c 2-a 2=m 24-m 216=316m 2. 故所求点A 的轨迹方程为16x 2m 2-16y 23m2=1(y ≠0).。

相关主题