高数下要点含微分方程自己的HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第六章 微分方程一、一阶微分方程1、一阶线性方程 )()(x Q y x P dxdy=+2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P xyn ).()(d d 1111x Q y x P xy n n n=+⋅---令.1n y z -= 二、可降阶的高阶方程1.)()(x f yn = n 次积分2.)',("y x f y = 不显含y令)('x p y =,化为一阶方程 ),('p x f p =。
3.)',("y y f y = 不显含自变量令)('y p y =,dydpp dx y d =22,化为一阶方程。
三、线性微分方程)()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- ,0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。
1.二阶线性齐次线性方程0)()(=+'+''y x Q y x P y (1)如果函数)(1x y 与)(2x y 是方程(1)的两个解,则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。
如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解,则)()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解.两个函数)(1x y 与)(2x y 线性无关的充要条件为C x y x y ≡/)()(21(常数)2.二阶线性非齐次线性方程设)(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+''的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的通解.设)(*1x y 与)(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+''的两个特解。
则+)(*1x y )(*2x y 是的特解。
(叠加原理)3.二阶线性常系数齐次方程0'"=++qy py y特征方程02=++q pr r ,特征根 21,r r4.二阶线性常系数非齐次方程 )(x f qy y p y =+'+''i) 如果x m e x P x f λ)()(=,则二阶线性常系数非齐次方程具有形如x m k e x Q x y λ)(*= 的特解。
其中,)(x P m 是m 次多项式, )(x Q m 也是系数待定的m 次多项式;2,1,0=k 依照λ为特征根的重数而取值.i)如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶线性常系数非齐次方程的特解可设为其中)(),()2()1(x R x R m m是系数待定的m次多项式,{}n l m,m ax =,1,0=k 依照ωλi +特征根的重数取值.四、欧拉方程二阶欧拉方程 )(2x f qy y px y x=+'+'',其中q p ,为常数.作变换te x =,则有 dt dy x dx dt dt dy dx dy 1=⋅=, ⎪⎪⎭⎫⎝⎛-=dt dy dt y d x dx y d 222221。
原方程变为二阶线性常系数方程 )()1(22te f qy dtdy p dx y d =+-+。
第七章 空间解析几何一、1、φβαβαsin ||||||=⨯,其中φ是α与β的夹角;2、向量积满足下列运算律:1)反交换律)(αββα⨯-=⨯; 2)结合律 )()()(βλαβαλβαλ⨯=⨯=⨯,其中λ是数量 ;3) 左分配律 βγαγβαγ⨯+⨯=+⨯)(,右分配律 γβγαγβα⨯+⨯=⨯+)(.3、321321212131313232b b b a a a k j i k b b a a j b b a a i b b a a=+-=⨯βα4、若0},,{321≠=a a a α,则ααα||10=称为α 单位化向量,并有0||ααα=.此时}cos ,cos ,{cos ,,2322213232221223222110γβαα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=a a a a aa a a a a a a 其中γβαcos ,cos ,cos 是α的方向余弦.三、1、旋转面方程yoz 平面上的曲线C :⎩⎨⎧==00),(x z y f 绕z 轴的旋转面方程为0),(22=+±z y x f ;绕y 轴的旋转面方程为0),(22=+±z x y f .类似可得其它坐标面上的曲线绕坐标轴的旋转面方程.2、柱面方程以xoy 平面上的曲线C :⎩⎨⎧==0),(z y x f 为准线,母线平行于z 轴的柱面方程为0),(=y x f .同理方程0),(=z y g 和0),(=z x h 分别表示母线平行于x 轴和y 轴的柱面.3、曲线在坐标面上的投影在空间曲线的方程 ⎩⎨⎧==0),,(0),,(:21z y x F z y x F C 中,经过同解变形分别消去变量z y x ,,,则可得到C 在yoz 、xoz 、xoy 平面上的投影曲线,分别为:⎩⎨⎧==00),(x z y F ; ⎩⎨⎧==00),(y z x G ;⎩⎨⎧==00),(z y x H四、1、平面方程1)点法式:过点),,(0000z y x P ,法向量},,{C B A n =的平面方程为0)()()(000=-+-+-z z C y y B x x A ,2)一般式: 0=+++D Cz By Ax ,其中C B A ,,不全为零.3)截距式:1=++czb y a x4)两个平面之间的关系设两个平面Π1与Π2的法向量依次为},,{1111C B A n =和},,{2222C B A n = .Π1与Π2的夹角θ规定为它们法向量的夹角(取锐角).此时2、直线方程1)一般式:将直线表示为两个平面的交线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A . 2)若直线L 经过点),,(0000z y x P 且与方向向量0},,{≠=n m l v 平行,则L 的方程为i) 对称式:nz z m y y l x x 000-=-=-. || || | | || cos CB A CB ACC B B AA nn n nii) 参数式:⎪⎩⎪⎨⎧+=+=+=tn z z t m y y t l x x 000,+∞<<∞-t.3)两条直线之间的关系设两条直线L 1和L 2方向向量分别为 },,{,},,{22221111n m l v n m l v ==,L 1 与 L 2 的夹角θ规定为它们方向向量的夹角(取锐角).于是3、直线与平面的关系设直线L 的方向向量为},,{n m l v = ,平面 Π 的法向量为},,{C B A n =.L 与Π的夹角φ规定为L 与它在Π上投影直线'L 的夹角(锐角).这时222222||||||||sin CB A n m l nC mB lA n v n v ++⋅++++=⋅•= φ. L 与 Π 垂直的充要条件是 CnB m A l ==.L 与 Π 平行的充要条件是 0=++nC mB lA五、1、椭圆抛物面: 2222by a x z +=,其中0,0>>b a (图3).例如22y x z +=,22y x z +=-等.2、椭圆锥面: 22222by a x z += ,其中 0,0>>b a (图4).例如,圆锥面222y x z +=.3、单叶双曲面 1222222=-+cz b y a x ,其中0,0,0>>>c b a (图5).例如 1222=-+z y x.4、双叶双曲面 1222222-=-+cz b y a x ,其中0,0,0>>>c b a(图6).例如1222=--y x z . 第八章 多元函数的微分学一、1.偏导数对某一个自变量求偏导数,就是将其余的自变量看作常数,对这个变量求一元函数的导数.2.高阶偏导数二元函数),(y x f 的二阶偏导数),(),(1122y x f y x f x zx z x xx ==∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂ ,或 11f ,11z ; ),(),(122y x f y x f yx zx z y xy ==∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂,或 12f ,12z ; ),(y x f xy 及),(y x f yx 称为二阶混合偏导数3、全微分二元函数),(y x f z =在点),(y x 处的全微分三元函数),,(z y x f u =的全微分,并有4、可微、可导、连续的关系在多元函数中,可微、可导、连续的关系与一元函数的情况有所不同.在多元函数中1)可微必可导,可导不一定可微;2)可微必连续,连续不一定可微;3)可导不一定连续,连续不一定可导5、复合函数的偏导数假设下列函数都可微,则有复合函数的求导公式(链式法则): a.若),(v u f z =,)(x u ϕ=,)(x v ψ=,则复合函数)](),([x x f z ψϕ=的导数为dx dz =dx du u z ∂∂+dxdv v z ∂∂; b.若),(v u f z =,),(y x u ϕ=,),(y x v ψ=,则复合函数)],(),,([y x y x f z ψϕ=的偏导数x z ∂∂=x u u z ∂∂∂∂+xvv z ∂∂∂∂ , y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂;6、隐函数的偏导数1)方程 0),(=y x F 所确定的隐函数的导数为yx F Fdx dy -=. 2)方程 0),,(=z y x F 所确定隐函数的偏导数为z x F F x z -=∂∂ , zy F F y z-=∂∂. 二、1、取得极值的必要条件如果函数),(y x f z =在点),(000y x P 的两个偏导数都存在,且在该点函数取得极值,则 0),(00=y x f x , 0),(00=y x f y .可导的极值点必是驻点,但极值点不一定是驻点.2.取得极值的充分条件设),(y x f z =在驻点),(00y x 的某个邻域内有二阶的连续偏导数.令),(00y x f A xx =, ),(00y x f B xy =,),(00y x f C yy =, AC B -=∆2,于是有1)如果0<∆,则点),(00y x 是函数的极值点.当0<A 时,),(00y x f 是极大值 ,当0>A 时,),(00y x f 是极小值.2)如果0>∆,则点),(00y x 不是函数的极值点.3)如果0=∆,则函数),(y x f z =在点),(00y x 有无极值不能确定,需用其它方法判别.3.条件极值1)求二元函数),(y x f z =在约束条件),(y x ϕ=0下的极值,可以按照如下步骤进行:i) 构造拉格朗日函数 ),(),(),(y x y x f y x L λϕ+=;ii) 解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=∂∂=+=∂∂0),(0),(),(0),(),(y x y x y x f y L y x y x f x Ly y x x ϕϕλϕλ. 若 000,,y x λ是方程组的解,则),(00y x 是该条件极值问题的可疑极值点.三、多元微分学的几何应用1.空间曲线的切线与法平面给定空间曲线 ⎪⎩⎪⎨⎧===)()()(:t z z t y y t x x L ,其中的三个函数有连续的导数且导数不同时为零(光滑曲线).L 上的点),,(0000z y x P 对应的参数为0t .则曲线L 在点),,(0000z y x P 处的切向量为})(',)(',)('{000t z t y t x ,此时的切线方程为)(')(')('000000t z z z t y y y t x x x -=-=- . 曲线L 在点),,(0000z y x P 的法平面方程为2.曲面的切平面与法线给定曲面∑的方程0),,(=z y x F ,函数),,(z y x F 有连续的偏导数且三个偏导数不同时为零(光滑曲面).点),,(0000z y x P 是∑上的一个点.则曲面∑在点),,(0000z y x P 处的法向量为}),,(,),,(,),,({000000000z y x F z y x F z y x F z y x ,此时的切平面方程为0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x ,曲面∑在点),,(0000z y x P 的法线方程为),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- .四.方向导数与梯度1.若函数 ),,(z y x f u =在点),,(z y x P 可微,方向l 的方向余弦为γβαcos ,cos ,cos ,则函数在点),,(z y x P 沿方向l 的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂. 2.设函数),,(z y x f u =在空间区域G 内可微,则函数在点),,(0000z y x P 处的梯度定义为一个向量grad ),,(000z y x f =k z y x f j z y x f i z y x f z y x),,(),,(),,(000000000++.梯度方向是函数变化率最大的方向.在梯度方向上函数的方向导数取得最大值 |),,(grad |000z y x f .第九章 重积分一、 二重积分的计算1.直角坐标下二重积分的计算1)若积分区域可以表示为D :,b x a ≤≤ )()(21x y x ϕϕ≤≤,则 2)若积分区域可以表示为 D :,d y c ≤≤ )()(21y x y ψψ≤≤,则⎰⎰⎰⎰=)()(21),(),(y y d cDdx y x f dy dxdy y x f ψψ.2.极坐标下二重积分的计算直角坐标与极坐标的关系为 ⎩⎨⎧==θθsin cos r y r x,.20,0πθ<≤+∞<≤r此时面积元素为θσrdrd d =或θrdrd dxdy =.若在极坐标下积分区域可以表示为)()(,:21θϕθϕβθα≤≤≤≤r D ,则⎰⎰⎰⎰⎰⎰==)()(21)sin ,cos ()sin ,cos (),(θϕθϕβαθθθθθθrdr r r f d rdrd r r f dxdy y x f DD二、三重积分的计算||1Ω==⎰⎰⎰⎰⎰⎰ΩΩdv dv ,||Ω表示Ω的体积.1.直角坐标下三重积分的计算1)“先一后二”法若积分区域可表示为 Ω:),(),(,)()(,2121y x z z y x z x y y x y b x a ≤≤≤≤≤≤,则其中xy D 是Ω在xoy 坐标面上的投影.2) “先二后一”法设积分区域Ω在z 轴上的投影区间为],[d c .用平面z =z (常数)去截Ω,截面为z D .则⎰⎰⎰⎰⎰⎰=ΩzD dcdxdy z y x f dz dxdydz z y x f ),,(),,( 其中⎰⎰zD dxdy z y x f ),,( 是将z D 投影到xoy 坐标面上所做的二重积分.2.柱面坐标下三重积分的计算直角坐标与柱面坐标的关系为 ⎪⎩⎪⎨⎧+∞<<∞-=<≤=+∞<≤=z z z r y r r x πθθθ20sin 0cos ,,则体积元素为dz rdrd dv θ=或 dz rdrd dxdydz θ=.若积分区域在柱面坐标下可表示为:Ω,βθα≤≤)()(21θθr r r ≤≤,),(),(21θθr z z r z ≤≤,则⎰⎰⎰⎰⎰⎰ΩΩ=dzrdrd z r r f dxdydz z y x f θθθ),sin ,cos (),,(⎰⎰⎰=),(),()()(2121),sin ,cos (θθθθβαθθθr z r z r r rdz z r r f dr d3.球面坐标下计算三重积分直角坐标与球面坐标的关系为⎪⎩⎪⎨⎧===ϕϕθϕθcos sin sin sin cos r z r y r x ,πθπϕ2000<≤≤≤+∞<≤r ,体积元素为θϕϕd drd r dv sin 2= 或 θϕϕd drd r dxdydz sin 2=.如果积分区域在球面坐标下可表示为Ω:,βθα≤≤ ),(),(,)()(2121θϕθϕθϕϕθϕr r r ≤≤≤≤,则⎰⎰⎰⎰⎰⎰ΩΩ=θϕϕϕϕθϕθd d dr r r r r f dxdydz z y x f sin )cos ,sin sin ,sin cos (),,(24.简算:对称奇偶性, 重心公式。