(1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。
2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。
(2)向量的数量积运算法则: 1)a b b a ••=。
2))()()(b a b a b a b a λλλλ===•••。
3)c b c a c b a •••+=+)(。
(3)平面向量的基本定理。
21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。
(4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =•,数量积b a •等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。
(5)平面向量的运算法则。
1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。
2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。
3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r。
4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。
5)设a =11(,)x y ,b =22(,)x y ,则a •b =1212()x x y y +。
(6)两向量的夹角公式:cos θ(a =11(,)x y ,b =22(,)x y )。
(7)平面两点间的距离公式:,A B d =||AB u u u r (A 11(,)x y ,B 22(,)x y )。
(8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有: 1)a ||b ⇔b =λa 12210x y x y ⇔-=。
2)a ⊥b (a ≠0)⇔ a ·b =012120x x y y ⇔+=。
(9)线段的定比分公式:设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=u u u r u u u r,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+u u u r u u u u r u u u r ⇔12(1)OP tOP t OP =+-u u u r u u u r u u u u r (11t λ=+)。
(10)三角形的重心公式:△ABC 三个顶点的坐标分别为11(,)A x y 、22(,)B x y 、33(,)C x y ,则△ABC 的重心的坐标为123123(,)33x x x y y y G ++++。
(11)平移公式:''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+u u u u r u u u r u u u r 。
(12)关于向量平移的结论。
1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++。
2)函数()y f x =的图像C 按向量a =(,)h k 平移后得到图像'C :()y f x h k =-+。
3)图像'C 按向量a =(,)h k 平移后得到图像C :()y f x =,则'C 为()y f x h k =+-。
4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图像'C :(,)0f x h y k --=。
设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
向量的加法OB+OA=OC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
[1]2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被向量的减法减”a=(x,y)b=(x',y') 则a-b=(x-x',y-y').如图:c=a-b 以b的结束为起点,a的结束为终点。
3、向量的数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
[2]4、向量的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。
若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2.向量的数量积不满足消去律,即:由a·b=a·c (a≠0),推不出b=c。
3.|a·b|与|a|·|b|不等价4.由 |a|=|b| ,推不出a=b或a=-b。
5、向量的向量积定义:两个向量a和b的向量积向量的几何表示(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。
若a、b不共线,则a×b 的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。
若a、b垂直,则a×b=0。
向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a垂直b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。
6、三向量的混合积定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,向量的混合积所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c混合积具有下列性质:1.三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c 构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)2.上性质的推论:三向量a、b、c共面的充要条件是(abc)=03.(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)4.(a×b)·c=a·(b×c)7.例题正方形ABCD,EFGA,CHIK首尾相连,L是EH中点,求证LB⊥GK?设AE=a﹙向量﹚, AG=a', AD=c, AB=c', CH=b,CK=b'有 aa'=bb'=cc'=0, a2=a'2, b2=b'2 ,c2=c'2,a'b=ab',a'c'=-ac,a'c=ac', bc=b'c'. b'c=-bc'﹙*﹚FH=-a+c+c'+b LB=FH/2-b-c=﹙-a-c+c'-b﹚/2, GK=-a'+c'+c+b'从﹙*﹚:﹙-a-c+c'-b﹚·﹙-a'+c'+c+b'﹚=……=0. ∴LB⊥GK8、三向量二重向量积由于二重向量叉乘的计算较为复杂,于是直接给出了下列化简公式以及证明过程:二重向量叉乘化简公式及证明。