当前位置:文档之家› 向量运算法则和运算律比较1

向量运算法则和运算律比较1

向量运算法则和运算律
立体几何中的向量方法
一、常用方法:1、综合法;2、向量法;3、坐标法;
二、常用技巧:1、假设(存在性):假设结论成立,待定系数建立结论成立的方程(组),根据方程组是否有解来检验结论的正误。

2、设元:在向量的几何运算中,将可以确定为基底的基向量设为元,用大字字母表示,其他向量用该基向量表示,可以简化计算过程。

3、平方:长度求解。

4:计算量:线性运算、比例(含对应坐标比)和数量积。

5、赋值:法向量求解。

三、易错易混辨析(明确定理、公式运用的前提条件)
1、错把向量比直线,本质辨清是关键。

⑴共线向量的平行或重合,主要是看两个向量所在的直线有没有公共点,如没有公共点,则对应的两条直线是平行的,如果有公共点,那么对应的两条直线是重合的。

⑵注意辨析平行直线与平行向量:平行向量所在的直线既可以平行,也可以重合;但平行直线是指不重合的两条直线。

2、混淆向量与平面平行和直线与平面平行导致错误。

线面平行要求直线必须在平面外,在利用向量证明线面平行时,需要说明对应的直线和平面的位置关系,这要求同学们在平时的学习中要注意充分理解定义、定理的实质。

3、混淆向量的夹角与空间角:利用向量数量积的性质求解有关平面或空间中角的问题时,要特别注意向量的夹角与所求角的区别与联系,切不可盲目套用而忽略角的取值范围。

利用向量求二面
角时,向量求解一般不能保证所示角是锐角还是钝角,这时要结合实际图形对所求角进行适当的处理,不能混淆二面角与面面角的大小。

4、方向向量、法向量的最佳求法:方向向量、法向量的求设要注意结合图形特点,找到线线平行、线面垂直的最本质的有关向量(如图形中固有的平面的垂线),减少计算环节,优化解题步骤。

四、向量应用注意点
1、从点、线、面、体的关系看向量:向量是空间中有顺序的两点,两点的连线是有向线段,即可以看作是空间多面体的棱或边,也可以看作是空间中直线的一个部分,由于向量具有平行移动性,向量移动可以构成平面,共面向量与共面直线是有区别的,由向量构成平面,一般不用共线的两个向量,这与平面的确定方式有所不同。

从平面向量到空间向量,是对向量的研究从一个平面扩展多个平面(至少三个),从二维平面转向三维空间,呈现多样性、复杂性的特点。

2、向量法的适用条件:空间向量法与坐标法的结合是一个重要工具,在普通的立体几何问题中,一般不是最佳方法,除非有意考查向量的应用,所以在立体几何的问题中,解题的方法首先考虑综合法,但在图形中具体线线关系、夹角、距离等不好寻找时,可以通过建立空间直角坐标系,向量在求解有关平行、垂直、夹角、距离等方面的优势才能突显出来,这类问题的立体几何图形一般是比较规则的,具有一定的特殊性,存在较多的平行、垂直关系,能找到建立空间直角坐标系所需要的三条两两垂直的直线,夹角、线段长度关系相对固定,容易求坐标值。

3、向量法的适用范围:在立体几何中构造向量,求解有关平行、垂直、夹角、距离、比值、共线(共面)等方面的问题时,要注意分析图形的特点,充分挖掘图形中的特殊关系(如平行、垂直、特殊角等),结合立体几何图形的有关性质、定理(这些是解决问题的基础),辨析向量关系与图形中相关关系的区别与联系,正确地将向量运算的结果“翻译”成相应的几何意义,关键点是考虑向量的方向性和移动性。

4、一题多解的训练:解题方法的多样化来自线线关系和向量构成的多样性,学习过程中,对待每一个题目,审题时要善于从多个角度进行思考,寻找多种解题方法,加强知识间的相互联系,拓展自己的解题思路,提高自己的综合能力。

相关主题