高中物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。
该电阻丝通有恒定电流时,两端的电势差为U ,假设自由电子定向移动的速率均为v 。
(1)求导线中的电流I ;(2)有人说“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”。
这种说法是否正确,通过计算说明。
(3)为了更好地描述某个小区域的电流分布情况,物理学家引入了电流密度这一物理量,定义其大小为单位时间内通过单位面积的电量。
若已知该导线中的电流密度为j ,导线的电阻率为ρ,试证明: Uj lρ=。
【答案】(1)I neSv =;(2)正确,说明见解析;(3)证明见解析【解析】 【详解】(1)电流的定义式QI t=,在t 时间内,流过横截面的电荷量Q nSvte = 因此I neSv = (2)这种说法正确。
在电路中,导线中电流做功为:W UIt = 在导线中,恒定电场的场强UE l=,导体中全部自由电荷为q nSle =, 导线中的恒定电场对自由电荷力做的功:U UW qEvt q vt nSel vt nSevUt l l==== 又因为I neSv =,则W UIt =故“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”是正确的。
(3)由欧姆定律:U IR = 由电阻定律:lR Sρ= 则l U I S ρ=,则有:U I l Sρ= 电流密度的定义:Q Ij St S== 故Uj lρ=3.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V 回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.4.如图所示,M 为一线圈电阻R M =0.5Ω的电动机,R=8Ω,电源电动势E=10V .当S 断开时,电流表的示数I 1=1A ,当开关S 闭合时,电流表的示数为I 2=3A . 求:(1)电源内阻r ;(2)开关S 断开时,电阻R 消耗的功率P . (3)开关S 闭合时,通过电动机M 的电流大小I M . 【答案】(1)2Ω (2)8W (3) 2.5A【解析】(1)当S 断开时,根据闭合电路欧姆定律: ()1E I R r =+, ()1018r =⨯+, r=2Ω;电阻R 消耗的功率: 221188P I R W W ==⨯=路端电压: ()210324U E I r V V =-=-⨯= R 之路电流: 40.58R U I A A R === 电动机的电流: ()230.5 2.5M R I I I A A =-=-=点睛:当S 断开时,根据闭合电路欧姆定律求解电源的内阻.当开关S 闭合时,已知电流表的示数,根据闭合电路欧姆定律求出路端电压,由欧姆定律求出通过R 的电流,得到通过电动机的电流.5.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A ; (2)0.096 N ,方向沿导轨水平向左【解析】 【分析】 【详解】(1)由闭合电路欧姆定律可得:I =64.50.5E A R r =++=1.2A (2)安培力的大小为: F =BIL =0.04×1.2×2N =0.096N安培力方向为沿导轨水平向左6.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为1.5Ω=5Ω0.3L L U R I == 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-7.在如图所示的电路中,电源内阻r =0.5Ω,当开关S 闭合后电路正常工作,电压表的读数U =2.8V ,电流表的读数I =0.4A 。
若所使用的电压表和电流表均为理想电表。
求: ①电阻R 的阻值; ②电源的内电压U 内; ③电源的电动势E 。
【答案】①7Ω;②0.2V ;③3V 【解析】 【详解】①由欧姆定律U IR =得2.8Ω7Ω0.4URI===电阻R的阻值为7Ω。
②电源的内电压为0.40.50.2VU Ir==⨯=内电源的内电压为0.2V。
③根据闭合电路欧姆定律有2.8V0.40.5V3VE U Ir=+=+⨯=即电源的电动势为3V。
8.利用如图所示的电路可以测量电源的电动势和内电阻。
当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为I1和U1。
改变滑片的位置后,两表的示数分别为I2和U2。
写出这个电源电动势和内电阻的表达式。
【答案】:E=122121U I U II I-- r=1221U UI I--【解析】【分析】由闭合电路欧姆定律列出两次的表达式,联立即可求解.【详解】由全电路欧姆定律得:E=U1+I1rE=U2+I2r解得:E=122121U I U II I--r=1221U UI I--9.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。
(1)电动势在数值上等于非静电力把1C的电荷在电源内从负极移送到正极所做的功,如图甲所示,如果移送电荷q时非静电力所做的功为W,写出电动势1E的表达式;(2)如图乙所示,固定于水平面的U形金属框架处于竖直向下的匀强磁场中,磁感应强度为B,金属框两平行导轨间距为L。
金属棒MN在外力的作用下,沿框架以速度v向右做匀速直线运动,运动过程中金属棒始终垂直于两平行导轨并接触良好。
已知电子的电荷量为ea .在金属棒产生电势的过程中,请说明是什么力充当非静电力,求出这个非静电力产生的电动势2E 的表达式;b .展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN 中金属离子对一个自由电子沿导线长度方向的平均作用力f 的表达式;(3)现代科学研究中常要用到高速电子,电子感应加速器就是利用感生电场使电子加速的设备。
它的基本原理如图丙所示,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动。
电磁铁线圈电流的大小、方向可以变化,产生的感生电场使电子加速。
上图为侧视图,下图为真空室的俯视图,如果从上向下看,电子沿逆时针方向运动。
已知电子的电荷量为e ,电子做圆周运动的轨道半径为r ,因电流变化而产生的磁感应强度随时间的变化率为Bk t∆=∆(k 为一定值)。
求电子在圆形轨道中加速一周的过程中,感生电场对电子所做功W 及电子所受非静电力F 的大小。
【答案】(1) 1E Wq=(2)a.外力充当非静电力,2E BLv =; b .f Bev = (3)2W ke r π=, 2kreF =【解析】 【详解】(1)根据电动势的定义可知:1E W q=(2)a .在金属棒产生电势的过程中外力充当非静电力;由题意可知金属棒在外力和安培力的作用下做匀速直线运动,则:=F F BIL =安所以根据电动势的定义有:2=W Fx BILvt E BLv q q It===b .从微观角度看,导线中的自由电子与金属离子发生了碰撞,可以看做是安全弹性碰撞,碰后自由电子损失动能,损失的动能转化为焦耳热。