高中物理稳恒电流技巧小结及练习题及解析一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.4.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
【答案】2012CE 【解析】 【详解】根据电容定义,有C=QU,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0,所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0,整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E 根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE5.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。
(1)求可控电阻R 随时间变化的关系式; (2)若已知棒中电流强度为I ,求时间内可控电阻上消耗的平均功率P ;(3)若在棒的整个运动过程中将题中的可控电阻改为阻值为的定值电阻,则棒将减速运动位移后停下;而由题干条件,棒将运动位移后停下,求的值。
【答案】(1);(2);(3)【解析】试题分析:(1)因棒中的电流强度保持恒定,故棒做匀减速直线运动,设棒的电阻为,电流为I ,其初速度为,加速度大小为,经时间后,棒的速度变为,则有:而,时刻棒中电流为:,经时间后棒中电流为:,由以上各式得:。
(2)因可控电阻R 随时间均匀减小,故所求功率为:,由以上各式得:。
(3)将可控电阻改为定值电阻,棒将变减速运动,有:,,而,,由以上各式得,而,由以上各式得,所求。
考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化【名师点睛】解决本题的关键知道分析导体棒受力情况,应用闭合电路欧姆定律和牛顿第二定律求解,注意对于线性变化的物理量求平均的思路,本题中先后用到平均电动势、平均电阻和平均加速度。
6.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V 回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3,即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V 回路的总电流为I 总′=I 1′+12U R '=0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.7.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻. 【解析】 【分析】 【详解】根据欧姆定律和串联电路特点可知,需串联的电阻1880g gUR R I =-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻0.12g g gI R R I I ==Ω-.8.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n =100匝,电阻r =1Ω,长l 1=0.5m ,宽l 2=0.4m ,角速度ω=10rad/s .磁场的磁感强度B =0.2T .线圈两端外接电阻R =9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值; (2)电流表的读数;(3)电阻R 上消耗的电功率.【答案】(1)40V ;(2)2.82A ;(3)72W . 【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V ;(2)线圈中产生感应拘泥于的最大值I=ER r+=4A ;故电流表的读数为2=2.82A ; (3)电阻R 上消耗的电功率P=(2.82A )2×9Ω=72W . 考点:感应电动势,欧姆定律,电功率的计算.9.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P ; (3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5 【解析】 【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-,解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1EI R R r=++,而 U = IR ,解得:R = 2×103 Ω滑动变阻器消耗的电功率220U P W R==.(3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.10.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻的理解其物理本质。