高中物理稳恒电流模拟试题及解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在3.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l)超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化.实际上仪器只能检测出大于△I的电流变化,其中△I<<I,当电流的变化小于△I时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e.试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t.为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法.【答案】(1)见解析(2)(3)见解析【解析】(1)逆时针方向。
原磁场磁感线垂直于圆环平面向上,当撤去磁场瞬间,环所围面积的原磁通量突变为零,由楞次定律可知,环中感应电流的磁场方向应与原磁场方向相同,即向上。
由右手螺旋定则可知,环中电流的方向是沿逆时针方向。
(2)设圆环周长为、电阻为R,由电阻定律得由于有电阻,所以圆环在传导电流过程中,电流做功,把电能全部转化为内能。
设t时间内环中电流释放焦耳热而损失的能量为,由焦耳定律得因电流是圆环中电荷的定向移动形成的,故可设环中单位体积内定向移动电子数为n,由电流强度的定义得:因式中n、e、S不变,所以只有定向移动电子的平均速率的变化才会引起环中电流的变化。
电流变化大小取时,相应定向移动电子的平均速率变化的大小为,则在t时间内单个电子在环中定向移动时减小的动能为:圆环中总电子为设环中定向移动电子减少的动能总和为,则由于,可得根据能量守恒定律,得 联立上述各式,得(3)由看出,在题设条件限制下,适当增大超导电流,可以使实验获得的准确程度更高,通过增大穿过该环的磁通量变化率可实现增大超导电流。
此题易错点:分析能量的转换关系以及微观量与宏观量关系时出错。
【考点定位】本题考查楞次定律、电阻定律、电流强度和能量转换等知识,是一道电磁学联系实际的综合问题,意在考查考生灵活应用物理知识解决实际问题的能力。
4.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
【答案】2012CE 【解析】 【详解】根据电容定义,有C=QU,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0,整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E 根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE5.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
6.利用如图所示的电路可以测量电源的电动势和内电阻。
当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为I 1和U 1。
改变滑片的位置后,两表的示数分别为I 2和U 2。
写出这个电源电动势和内电阻的表达式。
【答案】:E=122121U I U I I I -- r=1221U U I I --【解析】 【分析】由闭合电路欧姆定律列出两次的表达式,联立即可求解. 【详解】由全电路欧姆定律得: E=U 1+I 1r E=U 2+I 2r 解得: E=122121U I U I I I --r=1221U U I I --7.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V联立解得v =1 m /s .8.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P ; (3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5 【解析】 【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-,解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1EI R R r=++,而 U = IR ,解得:R = 2×103 Ω滑动变阻器消耗的电功率220U P W R==.(3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.9.如图甲,电阻为R=2Ω的金属线圈与一平行粗糙轨道相连并固定在水平面内,轨道间 距为d =0.5m ,虚线右侧存在垂直于纸面向里的匀强磁场,磁感应强度为B 1=0.1T ,磁场内外分别静置垂直于导轨的金属棒P 和Q ,其质量m 1=m 2= 0.02kg ,电阻R 1=R 2= 2Ω.t=0时起对左侧圆形线圈区域施加一个垂直于纸面的交变磁场B 2,使得线圈中产生如图乙所示的正弦交变电流(从M 端流出时为电流正方向),整个过程两根金属棒都没有滑动,不考虑P 和Q 电流的磁场以及导轨电阻.取重力加速度g= l0m/s 2,(1)若第1s 内线圈区域的磁场B 2正在减弱,则其方向应是垂直纸面向里还是向外? (2)假设最大静摩擦力等于滑动摩擦力,金属棒与导轨间的滑动摩擦因数至少应是多少? (3)求前4s 内回路产生的总焦耳热. 【答案】(1) 垂直纸面向里(2) 0.25.(3) 24J 【解析】试题分析:(1)第1s 内线圈区域的磁场2B 正在减弱,由图乙知:线圈中电流方向沿顺时针方向,根据楞次定律判断得知,磁场2B 的方向垂直纸面向里.(2)由图乙知,线圈中电流最大值为02I A =,则通过Q 棒的电流最大值为1;m I A =要使金属棒静止,安培力不大于最大静摩擦力,则有1m B I d mg μ≤ 得 ,故金属棒与导轨间的滑动摩擦因数至少应是0.25. (3)前4s 内电流的有效值为 回路的总电阻为0222I I ===2Ω+1Ω=3Ω 回路产生的总焦耳热224Q I R t J ==总考点:楞次定律;物体的平衡;焦耳定律.10.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J =【解析】 【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:224MN PQE I A R R ==+安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.11.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5 m的圆形区域内存在着垂直于斜面向下的匀强磁场.一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25 W的小灯泡A相连,圆形磁场的一条直径恰好过线框bc边.已知线框质量m=2 kg,总电阻R0=1.25 Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2-2πt(T)的规律变化.开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光.设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小灯泡正常发光时的电阻R;(2)线框保持不动的时间内,小灯泡产生的热量Q.【答案】(1)1.25 Ω(2)3.14 J【解析】【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;由功率表达式,结合闭合电路欧姆定律即可;(2)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得.【详解】(1)由法拉第电磁感应定律有E=ntΦ∆∆得22121100.5 2.5?22BE n r V Vtπππ∆⨯⨯⨯⨯∆===小灯泡正常发光,有P=I2R由闭合电路欧姆定律有E=I(R0+R)则有P=(ER R+)2R,代入数据解得R=1.25 Ω.(2)对线框受力分析如图设线框恰好要运动时,磁场的磁感应强度大小为B′,由力的平衡条件有mg sin θ=F安+f=F安+μmg cos θF安=nB′I×2r联立解得线框刚要运动时,磁场的磁感应强度大小B′=0.4 T线框在斜面上可保持静止的时间1.64 2/5t s sππ==小灯泡产生的热量Q=Pt=1.25×45πJ=3.14 J.12.如图所示,在两光滑平行金属导轨之间存在方向垂直纸面向里的匀强磁场,磁感应强度大小为B,导轨的间距为L,电阻不计.金属棒垂直于导轨放置,质量为m,重力和电阻可忽略不计.现在导轨左端接入一个电阻为R的定值电阻,给金属棒施加一个水平向右的恒力F,经过时0t后金属棒达到最大速度.()1金属棒的最大速度max v是多少?()2求金属棒从静止达到最大速度的过程中.通过电阻R的电荷量q;()3如图乙所示,若将电阻换成一个电容大小为C的电容器(认为电容器充放电可瞬间完成).求金属棒由静止开始经过时间t后,电容器所带的电荷量Q.【答案】()221FRB L;()0332Ft FmRBL B L-;()223FCBLtm CB L+.【解析】【分析】(1)当速度最大时,导体棒受拉力与安培力平衡,根据平衡条件、安培力公式、切割公式列式后联立求解即可;(2)根据法律的电磁感应定律列式求解平均感应电动势、根据欧姆定律列式求解平均电流、再根据电流定义求解电荷量;(3)根据牛顿第二定律和电流的定义式,得到金属棒的加速度表达式,再分析其运动情况.由法拉第电磁感应定律求解MN 棒产生的感应电动势,得到电容器的电压,从而求出电容器的电量.【详解】(1)当安培力与外力相等时,加速度为零,物体速度达到最大,即F=BIL=22maxB L vR由此可得金属棒的最大速度:v max=22FRB L(2)由动量定律可得:(F-F)t0=mv max其中:F=22xRtB L解得金属棒从静止达到最大速度的过程中运动的距离:x=022Ft R B L -244FmR B L通过电阻R 的电荷量:q=BLx R =0Ft BL -33FmR B L (3)设导体棒运动加速度为a ,某时装金属棒的速度为v 1,经过n t 金属体的速度为v 2,导体棒中流过的电流(充电电流)为I ,则:F-BIL=ma电流:I=Q t V V =C E tV V 其中:n E=BLv 2-BLv 1=BL n v ,a=v t n n 联立各式得:a=22F m CB L + 因此,导体棒向右做匀加速直线运动.由于所有电阻均忽略,平行板电容器两板间电压U 与导体棒切割磁感线产生的感应电动势E 相等,电容器的电荷量:Q=CBLat=22FCBLt m CB L + 答:(1)金属棒的最大速度max v 是22FR B L ; (2)金属棒从静止达到最大速度的过程中,通过电阻R 的电荷量q 为033Ft FmR BL B L -; (3)金属棒由静止开始经过时间t 后,电容器所带的电荷量Q 为22FCBLt m CB L +. 【点睛】 解决本题的关键有两个:一是抓住电流的定义式,结合牛顿第二定律分析金属棒的加速度.二是运用微元法,求解金属棒的位移,其切入口是加速度的定义式.13.如图所示,质量m=1kg 的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8V 、内阻r=1Ω,额定功率为8W 、额定电压为4V 的电动机M 正常工作.取sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s 2.试求:(1)电动机当中的电流I M 与通过电源的电流I 总.(2)金属棒受到的安培力大小及磁场的磁感应强度大小.【答案】(1)电动机当中的电流是2A ,通过电源的电流是4A ;(2)金属棒受到的安培力大小是6N ,磁场的磁感应强度大小3T .【解析】试题分析:(1)由P=UI 求出电动机中的电流,由串并联电路的电压关系得到内电阻上的电压,由欧姆定律得到干路电流;(2)进而得到磁场中导线的电流,由平衡条件得到安培力,由安培力公式得到B.解:(1)电动机的正常工作时,有:P M=UI M代入数据解得:I M=2A通过电源的电流为:I总===4A(2)导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即:F=mgsin37°=6N流过电动机的电流I为:I=I总 I M=4A 2A=2AF=BIL解得:B=3T答:(1)电动机当中的电流是2A,通过电源的电流是4A;(2)金属棒受到的安培力大小是6N,磁场的磁感应强度大小3T.【点评】本题借助安培力与电路问题考查了平衡条件的应用,解答的关键是正确找出两个支路的电流之间的关系.是一道很好的综合题.14.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R=4Ω的定值电阻,两导轨在同一平面内,质量为m=0.2kg,长为L=1.0m的导体棒ab垂直于导轨,使其从靠近电阻处由静止开始下滑,已知导体棒电阻为r=1Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,导体棒下滑过程中加速度a与速度v的关系如图乙所示.求:(1)导轨平面与水平面间夹角θ(2)磁场的磁感应强度B;(3)若靠近电阻处到底端距离为S=7.5m,ab棒在下滑至底端前速度已达5m/s,求ab棒下滑到底端的整个过程中,电阻R上产生的焦耳热.【答案】(1)导轨平面与水平面间夹角θ为30°.(2)磁场的磁感应强度B为1T.(3)ab棒下滑到底端的整个过程中,电阻R上产生的焦耳热是4J.【点评】本题的解题关键是根据牛顿第二定律和安培力公式推导出安培力与速度的关系式,结合图象的信息求解相关量.【解析】试题分析:(1)设刚开始下滑时导体棒的加速度为a1,则a1=5得:(2)当导体棒的加速度为零时,开始做匀速运动,设匀速运动的速度为v0,导体棒上的感应电动势为E,电路中的电流为I,由乙图知,匀速运动的速度v0=5此时,,,联立得:(4)设ab棒下滑过程,产生的热量为Q,电阻R上产生的热量为Q R,则,考点:本题考查电磁感应、能量守恒15.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:(1)金属棒下滑的最大速度v m;(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.【答案】(1)30m/s(2)50J【解析】解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①ab棒产生的感应电动势为 E=BLv m…②通过ab的感应电流为 I=…③回路的总电阻为 R=r+R1+…④联解代入数据得:v m=30m/s…⑤(2)由能量守恒定律有:mg•2s0sinθ=Q+…⑥联解代入数据得:Q=50J…⑦答:(1)金属棒下滑的最大速度v m是30m/s.(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.。