当前位置:文档之家› 锂电离子电池电解液基本概念

锂电离子电池电解液基本概念

为了满足以上要求就需要在电解液生产过程中控制有 机溶剂和锂盐的纯度和水分等指标,以确保电解液 在电池工作时充分、有效的发挥作用。
有机溶剂的选择标准
1.有机溶剂对电极应该是惰性的,在电池的充放 电过程中不与正负极发生电化学反应,稳定性好
2.有机溶剂应该有较高的介电常数和较小的黏度 以使锂盐有足够高的溶解度,保证高的电导率
但是砜类的熔点高和黏度大,成为它的最大缺点。
常见溶剂的物理性质
有机溶剂 沸点 EC 248 DMC 90 EMC 108 DEC 127 PC 241.7 MPC 130
DMSO 189 GBL 206
熔点 闪点 黏度 相对介电常数
36 150 1.86
89.6
3 15 0.59
3.1
-55 23 0.65
常用锂盐
LiClO4 LiAsF6 LiBF4 LiPF6 LiCF3SO3 LiN(CF3SO2)2 LiC(SO2CF3)3 新型的硼酸锂盐
几种常用锂盐的简单性能对比
❖ LiBF4:低温性能比较好,但是价格昂贵和溶解度 比较低;
❖ LiPF6:综合性能比较好,缺点是易吸水水解,热 稳定性差;
3.熔点低、沸点高、蒸气压低,从而使工作温度 范围较宽
4.与电极材料有较好的相容性,电极在其构成的 电率、成本、环境因素等方面的考虑
锂离子电池所使用的有机溶剂
1.碳酸酯类 2.羧酸酯类 3.醚类有机溶剂 4.含硫有机溶剂
1 碳酸酯类
碳酸酯类溶剂具有较好的电化学稳定性、较高的闪点 和较低的熔点在锂离子电池中得到广泛的使用。碳酸 酯类的溶剂就其结构而言,主要分为两类: 1.环状碳酸酯 PC和EC 2.链状碳酸酯 DMC、EMC、DEC
3
醚类有机溶剂
醚类有机溶剂介电常数低,黏度较小,但 是醚类的性质活泼,抗氧化性不好,故不 常用作锂离子电池电解液的主要成分,一 般做为碳酸酯的共溶剂或添加剂使用来提 高电解液的电导率.
4 含硫有机溶剂
含硫溶剂中最有可能在锂离子电池中使用的是砜类。 但是大部分砜类室温下为固体,只有与其它溶剂混 合才能构成液体电解液。此外砜类溶剂一般具有非 常高的稳定性和库仑效率,有利于提高电池的安全 性和循环性能。
2.保护碳材料的表面,即在碳负极表面形 成钝化膜或称之为SEI膜(solid electrolyte interface)
石墨负极三种不同的结构变化
还原反应的破坏与保护
破坏——溶剂化锂离子穿越电极/电解液相界面直 接进入碳材料层间。嵌层的溶剂分子在更低的电 位下还原分解生成锂盐沉淀在石墨层间,同时生 成大量气体导致碳材料结构发生层离。
保护——溶剂化的锂离子也在碳负极表面获得电子 而发生还原分解反应,这样的过程同样有锂盐和气 体生成,但是生成的锂盐电介质会沉积在碳负极表 面形成钝化膜,阻止溶剂嵌入还原。
关于碳负极表面的SEI膜,必须明确以下4个 方面: 1.SEI膜的形成机制 2.SEI膜的结构与形成SEI膜的反应 3.SEI膜的结构和导Li+机理 4.SEI膜的电极界面稳定性
❖ LiAsF6:综合性能比较好,但是毒性太大; ❖ LiClO4:综合性能比较好,但是强氧化性导致安
全性不高; ❖ LiBOB:高温性能比较好,尤其能拟制溶剂对负
极的插入破坏,但是溶解度太低。
LiPF6的优点
由于PF6-的缔合能力较差,形成LiPF6电解液的 电导率 较大,高于其它所有无机锂盐。此外它 的电化学稳定性强,阴极的稳定电压达5.1V, 远高于锂离子电池要求的4.2V,且不腐蚀铝集 流体,综合性能优于其它锂盐。
SEI膜的形成机理模型:
常见电解质添加剂
1.负极的成膜添加剂 2.过充保护的添加剂 3.阻燃添加剂 4.稳定剂 5.提高电导率的添加剂 6.高低温性能添加剂
电极/电解液界面
1 负极与电解液界面
负极的碳材料在电池首次充放电过程中 不可避免的要与电解液发生反应。
1.破坏碳负极的结构发生的反应将导致碳 材料的结构发生变化
2.9
-43 33 0.75
2.8
-49.2 135 2.530
64.4
-43 36 0.78
2.8
18.4
1.991
42.5
-42 104 1.751
39.1
锂电池性能优良的锂盐特点:
1.锂盐在有机溶剂中有足够高的溶解度,缔合度小, 易于解离,以保证电解液具有较高的电导率。 2.阴离子具有较高的氧化和还原稳定性,在电解液 中稳定性好,还原产物有利于电极钝化膜的形成。 3.具有较好的环境亲合性,分解产物对环境污染小. 4.易于制备和纯化,生产成本低。
锂离子电池电解 质溶液
电解液的组成 电解液/电极界面 电解液的发展方向
电解液生产工艺
电解液的组成 溶剂+锂盐
电解液的选择
由于锂离子电池负极的电位与锂接近,比较活泼,在 水溶液体系中不稳定,必须使用非水、非质子性有 机溶剂作为锂离子的载体。
电解质锂盐是提供锂离子的源泉,保证电池在充放电 循环过程中有足够的锂离子在正负极来回往返,从 而实现可逆循环。因此必须保证电极与电解液之间 没有副反应发生。
LiPF6的缺点
LiPF6的热稳定性不如其它锂盐,即使在高纯状态下也
能发生分解。
LiPF6 → LiF+PF5
生成的气态PF5具有较强的路易斯酸性,会与溶剂分子
中氧原子上的孤电子对作用使溶剂发生分解反应
反应过程中将产生二氧化碳等气体使电池内压增加, 带来不安全的因素。
关于添加剂
添加剂一般具有以下特点 : 1.较少用量即能改善电池的一种或几种性能 2.对电池性能无副作用 3.与有机溶剂有较好的相溶性 4.价格相对较低 5.无毒性或毒性较小 6.不与电池中其它材料发生副反应
SEI膜形成机制
1.在一定的负极电位下,到达电极/电解液相界面的锂离 子与电解液中的溶剂分子、锂盐阴离子、添加剂,甚至 是杂质分子,在电极/电解液相界面发生不可逆反应。 2.不可逆反应主要发生在电池首次充电过程中。 3.在电池首次充电过程中,碳负极表面先于Li+插层建立 完善、致密、Li+可导的SEI膜。 4.电极表面完全被SEI膜覆盖后,不可逆反应即停止。 5.一旦形成稳定的SEI膜,充放电过程可多次循环进行。
相关主题