当前位置:文档之家› 全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下:不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性)(2)c b c a b a +>+⇔>(加法保序性)(3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式).(4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

1.比较法(比较法可分为差值比较法和商值比较法。

) (1)差值比较法(原理:A - B >0A >B .)例1 设a, b, c ∈R +,试证:对任意实数x, y, z, 有x 2+y 2+z 2.))()((2⎪⎪⎭⎫ ⎝⎛++++++++≥xz b a c yz a c b xy c b a a c c b b a abc 证明:左边-右边=x 2+y 2+z 2222()()()()()()ab bc caxy yz xz b c c a a b c a a b b c ---++++++222222()()()()b ab a c bc b x xy y y yz z b c b c c a c a c a a b c a a b =-++-+++++++++ 222()()a ca c z xz x a b a b b c b c+-+++++ 2220.b a c b a c x y y z z x b c c a c a a b a b b c ⎛⎫⎛⎫⎛⎫=++-+-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ 所以左边≥右边,不等式成立。

(2)商值比较法(原理:若>1,且B>0,则A>B 。

)例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|.解:因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x a a -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1).所以|log a (1+x)|>|log a (1-x)|.2.分析法(即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。

)例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab - 证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+, 因为33332abc b a c ab ab c ab c =⋅⋅≥++=+,所以原不等式成立。

例4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤- 证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a)≤b(1-b)≤c(1-c), 所以)1(1)1(1)1(1c c b b a a -≥-≥-,所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-,所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-,也就是证)1)(1()1)(1(b a b ba b a a b a ---≤---,只需证b(a-b)≤a(a-b),即(a-b)2≥0,显然成立。

所以命题成立。

3.综合法例5若a,b,c>0,求证:abc≥(a+b -c)(b+c-a)(c+a-b)。

证明:∵(a+b -c)+(b+c-a)=2b >0, (b+c-a)+(c+a-b)=2c >0,(c+a-b)+(a+b-c)=2a >0,∴a+b -c,b+c-a,c+a-b 中至多有一个数非正.(1) 当a+b-c,b+c-a,c+a-b 中有且仅有一个数为非正时,原不等式显然成立. (2) a +b-c,b+c-a,c+a-b 均为正时,则()()()()2a b c b c a a b c b c a b +-++-+-+-≤=同理()()()(),,a b c a c b a b c a a c b c +-+-≤+-+-≤三式相乘得abc ≥(a+b -c)(b+c-a)(c+a-b)例6已知△ABC 的外接圆半径R=1,S △ABC =,a,b,c 是△ABC 的三边长,令S=,t=。

求证:t>S 。

解:由三角形面积公式:1sin 2bc A .正弦定理:a/sinA=2R.可得abc=1.所以2t=2bc+2ac+2ab.由因为a.b.c 均大于0。

所以bc ac ab a abc b abc c abc a b c 所以t>s 。

4.反证法例7 设实数a 0, a 1,…,a n 满足a 0=a n =0,且a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0,…, a n-2-2a n-1+a n ≥0,求证a k ≤0(k=1, 2,…, n-1). 证明:假设a k (k=1, 2,…,n-1) 中至少有一个正数,不妨设a r 是a 1, a 2,…, a n-1中第一个出现的正数,则a 1≤0, a 2≤0,…,a r-1≤0, a r >0. 于是a r -a r-1>0,依题设a k+1-a k ≥a k -a k-1(k=1, 2, …, n-1)。

所以从k=r 起有a n -a k-1≥a n-1-a n-2 ≥…≥a r -a r-1>0.因为a n ≥a k-1≥…≥a r+1≥a r >0与a n =0矛盾。

故命题获证。

5.数学归纳法例8 对任意正整数n(≥3),求证:n n+1>(n+1)n .证明:1)当n=3时,因为34=81>64=43,所以命题成立。

2)设n=k 时有k k+1>(k+1)k,当n=k+1时,只需证(k+1)k+2>(k+2)k+1,即12)2()1(++++k k k k >1.因为1)1(1>++k k k k ,所以只需证12)2()1(++++k k k k kk k k )1(1+>+, 即证(k+1)2k+2>[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k 2+2k+1>k 2+2k. 显然成立。

所以由数学归纳法,命题成立。

6.分类讨论法例9 已知x, y, z ∈R +,求证:.0222222≥+-++-++-yx xz x z z y z y y x 证明:不妨设x ≥y, x ≥z.ⅰ)x ≥y ≥z ,则zy z x y x +≤+≤+111,x 2≥y 2≥z 2,由排序原理可得 yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立。

ⅱ)x ≥z ≥y ,则zy y x z x +≤+≤+111,x 2≥z 2≥y 2,由排序原理可得 yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立。

7.放缩法(即要证A>B ,可证A>C 1, C 1≥C 2,…,C n-1≥C n , C n >B(n ∈N +).)例10 已知a, b, c 是△ABC 的三条边长,m>0,求证:.mc cm b b m a a +>+++ 证明:m b a m m b a b a m b a b m b a a m b b m a a ++-=+++=+++++>+++1mc cm c m +=+->1 (因为a+b>c ),得证。

8.引入参变量法例11 已知x, y ∈R +, l, a, b为待定正数,求f(x, y)=2323yb x a +的最小值。

解: 设k x y =,则k kly k l x +=+=1,1,f(x,y)==⎪⎪⎭⎫⎝⎛++23322)1(k b a l k 22333233333211111l k a k b k b k b k a k a b a l ≥⎪⎪⎪⎪⎭⎫ ⎝⎛+⋅+⋅+⋅++++ (a 3+b 3+3a 2b+3ab 2)=23)(l b a +, 等号当且仅当y bx a =时成立。

所以f(x, y)min =.)(23l b a + 例12 设x 1≥x 2≥x 3≥x 4≥2, x 2+x 3+x 4≥x 1,求证:(x 1+x 2+x 3+x 4)2≤4x 1x 2x 3x 4. 证明:设x 1=k(x 2+x 3+x 4),依题设有31≤k ≤1, x 3x 4≥4,原不等式等价于(1+k)2(x 2+x 3+x 4)2≤4kx 2x 3x 4(x 2+x 3+x 4),即kk 4)1(2+(x 2+x 3+x 4)≤x 2x 3x 4,因为f(k)=k+k 1在⎥⎦⎤⎢⎣⎡1,31上递减,所以k k 4)1(2+(x 2+x 3+x 4)=)21(41++k k (x 2+x 3+x 4)≤42313++·3x 2=4x 2≤x 2x 3x 4. 所以原不等式成立。

相关主题