当前位置:文档之家› 归纳二重积分的计算方法

归纳二重积分的计算方法

归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),b dacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),b dacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得(),Df x y d σ⎰⎰(),d bcady f x y dx =⎰⎰2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法.2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay x dx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分.同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积.第一卦限部分的立体式以z =,以四分之一圆域D :00,y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvvv De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,uy v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以()()22334433()6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--====⎰⎰⎰⎰⎰⎰ 2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有21()()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是()(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰例1 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤,cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例6计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =为顶的曲顶柱体体积.由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有101(1)3I ab z dz ab ππ=-=⎰2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a =时,t α=;当x b =时,t β=。

设(,)f x y 在D 上连续,且存在(,)P x y ,(,)x y D ∈使得(,)Pf x y y∂=∂,则 '(,){[(),()][(),]}()Df x y dxdy P t t P t c t dt βα=Φψ-ΦΦ⎰⎰⎰2.52利用格林公式计算定理 若函数(,)P x y ,(,)Q x y 在闭区域D 上连续,且有连续的一阶偏导数,则有()LDQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰这里L 为区域D 的边界线,并取正方向. 计算步骤:(1) 构造函数(,)P x y ,(,)Q x y 使Q x ∂∂(,)Pf x y y∂-=∂,但(,)P x y ,(,)Q x y 在D 上应具有一阶连续偏导数;(2)利用格林公式化曲线积分求之.例7计算34Dx y dxdy ⎰⎰,D 是由椭圆cos x a θ=,sin y b θ=所围成.解法一(利用变量代换)设1D 为D 在第一象限,则135242425353520444cos ,sin cos sin (sin )5564D D a b x y dxdy x y dxdy x y dx x a y b a b d ππθθθθθθ====-=⎰⎰⎰⎰⎰⎰作变换 解法二(利用格林公式)令2515P x y =-,0Q =,则24P x y y ∂=-∂,0Qx ∂=∂. 352242525011(cos )(sin )(sin )5564L Da b x y dxdy x y dx a b a d ππθθθθ=-=--=⎰⎰⎰⎰ 2.7 积分区域具有对称性的二重积分的简便算法 2.71积分区域关于坐标轴对称性质1 若(,)f x y 在区域D 内可积,且区域D 关于y 轴(或x 轴)对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于(或)的奇函数为关于(或)的偶函数其中1D 为区域D 被y 轴(或x 轴)所分割的两个对称子域之一. 例 计算(23)Dh x y dxdy --⎰⎰,其中D 是由222x y R +=所围成的闭区域. 解析 由于积分区域D 关于x 轴\y 轴均对称性,只需考虑被积函数(,)23f x y h x y =--关于x 或y 的奇偶性.易见,(,)f x y 关于x 或y 既非奇函数,也非偶函数.若记()2f x x =-,()3f y y =-,则(,)()()f x y h f x f y =++且()f x 为x 的奇函数,()f y 为y 的奇函数.由此由性质1,有41122000cos()cos()0222cos()2cos()12yy D dxdy LDy y xx x y x y x y D D x y dxdy dy x y dx ππππππ-=====≤+=≤++≤=+=+=-⎰⎰⎰⎰,20Dhdxdy hR π=⎰⎰故有(,)Df x y dxdy =⎰⎰()Df x dxdy ⎰⎰+()Df y dxdy ⎰⎰+D hdxdy ⎰⎰=Dhdxdy ⎰⎰=2hR π 2.72积分区域关于某直线L 对称性质2 若(,)f x y 在区域D 内可积,且区域D 关于L 对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DD f x y L f x y dxdy f x y dxdy f x y L ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于直线的奇函数为关于直线的偶函数其中1D 为区域D 被L 所分割的两个对称子域之一. 例 求,其中D 由直线0y =,y x =,2x π=围成.解析 对任意(,)x y D ∈,有0x y π≤+≤.而当02x y π≤+≤时,cos()0x y +≥.当2x y ππ≤+≤时,cos()0x y +≤.故作直线L :2x y π+=,把D 分成1D 和2D 两部分,而1D 和2D 关于直线L 对称.又cos()x y +关于直线L 偶对称.故}cos()Dx y dxdy +⎰⎰41202cos()2cos()12yyD x y dxdy dy x y dx πππ-=+=+=-⎰⎰⎰⎰2.8 运用导数的定义求极限 例10 计算)0(ln )ln(lim0>-+→h xhx h x思路:对具有000)()(limx x x f x f x --→或hx f h x f h )()(lim 000-+→形式的极限,可由导数的定义来进行计算. 解:原式=hx h x 1|)'(ln == 2.9运用定积分的定义求极限]3[例11计算01lim 1cosn n →++ 思路:和式极限,利用定积分定义10011lim ()()n n i iff x n n →==∑⎰dx求得极限.解:原式01001lim 2n n i n xdx ππ→=====⎰⎰2.10 运用微分中值定理求极限例12:计算sin 0lim sin x x x e e x x→--思路:对函数()f x 在区间[sin ,]x x 上运用拉格朗日中值定理,即可求得. 解:原式0lim 1e αα→== (其中α在[sin ,]x x 区间内)总上所述,在不同的类型下,所采用的技巧是各不相同的,求极限时,可能有多种求法,有难有易,也可能在求题的过程中,需要结合上述各种方法,才能简单有效的求出,因此学会判断极限的类型,另外对以上的解法能活学活用,是必要的.参考文献:[1]华东师范大学数学系. 数学分析(第五版)[M]. 高等教育出版社,2001.[2]钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003.[3] 李占光. 函数极限的计算方法[J]. 长沙民政职业技术学院学报,2004.。

相关主题