考点一 圆周运动中的运动学分析1.线速度:描述物体圆周运动快慢的物理量.v =Δs Δt =2πr T. 2.角速度:描述物体绕圆心转动快慢的物理量.ω=ΔθΔt =2πT. 3.周期和频率:描述物体绕圆心转动快慢的物理量.T =2πr v ,T =1f. 4.向心加速度:描述速度方向变化快慢的物理量.a n =v 2r =rω2=ωv =4π2T 2r . 5.相互关系:(1)v =ωr =2πTr =2πrf . (2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r . [思维深化]1.匀速圆周运动和匀速直线运动中的两个“匀速”的含义相同吗?有什么区别?答案 不同.前者指线速度的大小不变,后者指速度的大小和方向都不变.2.判断下列说法是否正确.(1)匀速圆周运动是匀变速曲线运动.(×)(2)做匀速圆周运动的物体所受合外力大小、方向都保持不变.(×)(3)做匀速圆周运动的物体角速度与转速成正比.(√)1.[链条传动]图1是自行车传动装置的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )图1A.πnr 1r 3r 2B.πnr 2r 3r 1C.2πnr 2r 3r 1D.2πnr 1r 3r 2答案 D解析 因为要计算自行车前进的速度,即车轮Ⅲ边缘上的线速度的大小,根据题意知:轮Ⅰ和轮Ⅱ边缘上的线速度的大小相等,据v =rω可知:r 1ω1=r 2ω2,已知ω1=ω,则轮Ⅱ的角速度ω2=r 1r 2ω,因为轮Ⅱ和轮Ⅲ共轴,所以转动的角速度相等即ω3=ω2,根据v =rω可知,v 3=r 3ω3=ωr 1r 3r 2=2πnr 1r 3r 2. 2.[皮带传动](多选)如图2所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A 2,若在传动过程中,皮带不打滑.则( )图2A .A 点与C 点的角速度大小相等B .A 点与C 点的线速度大小相等C .B 点与C 点的角速度大小之比为2∶1D .B 点与C 点的向心加速度大小之比为1∶4答案 BD解析 处理传动装置类问题时,对于同一根皮带连接的传动轮边缘的点,线速度相等;同轴转动的点,角速度相等.对于本题,显然v A =v C ,ωA =ωB ,选项B 正确;根据v A =v C 及关系式v =ωR ,可得ωA R A =ωC R C ,又R C =R A 2,所以ωA =ωC 2,选项A 错误;根据ωA =ωB ,ωA =ωC 2,可得ωB =ωC 2,即B 点与C 点的角速度大小之比为1∶2,选项C 错误;根据ωB =ωC 2及关系式a =ω2R ,可得a B =a C 4,即B 点与C 点的向心加速度大小之比为1∶4,选项D 正确.3.[摩擦传动]如图3所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在转动过程中的()图3A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶4答案 D解析A、B轮摩擦传动,故v a=v b,ωa R A=ωb R B,ωa∶ωb=3∶2;B、C同轴,故ωb=ωc,v b R B=v cR C,v b∶v c=3∶2,因此v a∶v b∶v c=3∶3∶2,ωa∶ωb∶ωc=3∶2∶2,故A、B错误.转速之比等于角速度之比,故C错误.由a=ωv得:a a∶a b∶a c=9∶6∶4,D正确.传动问题的类型及特点1.传动的类型(1)皮带传动(线速度大小相等);(2)同轴传动(角速度相等);(3)齿轮传动(线速度大小相等);(4)摩擦传动(线速度大小相等).2.传动装置的特点(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.考点二圆周运动中的动力学分析1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,就是向心力.3.向心力的公式F n =ma n =m v 2r =mω2r =mr 4π2T 2=mr 4π2f 2. 4.匀速圆周运动的条件当物体所受的合外力(大小恒定)始终与速度方向垂直时,物体做匀速圆周运动,此时向心力由物体所受合外力提供.[思维深化]判断下列说法是否正确.(1)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.(×)(2)做圆周运动的物体所受到的合外力不一定等于向心力.(√)(3)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.(×)(4)在绝对光滑的水平路面上汽车可以转弯.(×)(5)火车转弯速率小于规定的数值时,内轨受到的压力会增大.(√)(6)飞机在空中沿半径为R 的水平圆周盘旋时,飞机机翼一定处于倾斜状态.(√)4.[圆周运动的受力分析]如图4所示,小物体A 与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A 受力情况是( )图4A .重力、支持力B .重力、向心力C .重力、支持力和指向圆心的摩擦力D .重力、支持力、向心力和摩擦力答案 C5.[火车拐弯的动力学分析]摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一超高速列车在水平面内行驶,以360 km /h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客,在拐弯过程中所受到的火车给他的作用力为(g 取10 m/s 2)( )A .500 NB .1 000 NC .500 2 ND .0答案 C解析 乘客所需的向心力:F n =m v 2R=500 N ,而乘客的重力为500 N ,故火车对乘客的作用力大小为500 2 N ,C 正确.6.[斜面上圆周运动的动力学分析]如图5所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是( )图5A .A 球的角速度等于B 球的角速度B .A 球的线速度大于B 球的线速度C .A 球的运动周期小于B 球的运动周期D .A 球对筒壁的压力大于B 球对筒壁的压力答案 B解析 先对小球受力分析,如图所示,由图可知,两球的向心力都来源于重力G 和支持力F N 的合力,建立如图所示的坐标系,则有:F N sin θ=mg ①F N cos θ=mrω2②由①得F N =mg sin θ,小球A 和B 受到的支持力F N 相等,选项D 错误.由于支持力F N 相等,结合②式知,A 球运动的半径大于B 球运动的半径,A 球的角速度小于B 球的角速度,选项A 错误.A 球的运动周期大于B 球的运动周期,选项C 错误.又根据F N cos θ=m v 2r可知:A 球的线速度大于B 球的线速度,选项B 正确.水平面内圆周运动临界问题的分析技巧1.审清题意,确定研究对象;明确物体做圆周运动的平面是至关重要的一环;2.分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;3.分析物体的受力情况,画出受力分析图,确定向心力的来源;4.根据牛顿运动定律及向心力公式列方程.考点三 水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.7.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg答案AC解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω= kg 2l 时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 8.[绳子张力的临界问题]如图7所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程中OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )图7A .OB 绳的拉力范围为0~33mg B .OB 绳的拉力范围为33mg ~233mg C .AB 绳的拉力范围为33mg ~233mg D .AB 绳的拉力范围为0~233mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg ,F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2=233mg ,因此OB 绳的拉力范围为33mg ~233mg ,AB 绳的拉力范围为0~33mg ,B 项正确. 9.[接触与脱离的临界问题]如图8所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10 m/s 2,结果可用根式表示)求:图8 (1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?答案 (1)522 rad/s (2)2 5 rad/s 解析 (1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω 20l sin θ解得:ω 20=g l cos θ即ω0= g l cos θ=522 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=g l cos α,即ω′= g l cos α=2 5 rad/s.水平面内圆周运动临界问题的分析技巧1.在水平面内做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的趋势(半径有变化).这时要根据物体的受力情况,判断某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等).2.三种临界情况:(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.考点四 竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球10.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是()图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR答案 BC解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.12.[绳模型分析](多选)如图11所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(取g =10 m/s 2)( )图11A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s答案 CD解析 当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤m v 2r,又根据机械能守恒定律有12m v 2+2mgr =12m v 20,得v 0≥2 5 m/s ,C 正确.当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处时速度恰好减为零,根据机械能守恒定律有mgr =12m v 20,得v 0≤2 2 m/s ,D 正确. 13.[凹形桥分析](2015·新课标全国Ⅰ·22)某物理小组的同学设计了一个粗糙玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).图12完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图12(a)所示,托盘秤的示数为1.00 kg ;(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为___ kg ;(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示:(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为________ N ;小车通过最低点时的速度大小为________ m /s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)答案 (2)1.40 (4)7.9 1.4解析 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.竖直面内圆周运动类问题的解题技巧1.定模型:首先判断是绳模型还是杆模型,两种模型过最高点的临界条件不同.2.确定临界点:抓住绳模型中最高点v ≥gR 及杆模型中v ≥0这两个临界条件.3.研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.4.受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向.5.过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.1.(多选)如图13所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中,下列说法正确的是( )图13A .木块A 处于超重状态B .木块A 处于失重状态C .B 对A 的摩擦力越来越小D .B 对A 的摩擦力越来越大 答案 BC解析 A 、B 一起做匀速圆周运动,合力提供向心力,加速度即向心加速度.水平位置a 沿逆时针方向运动到最高点b 的过程中,加速度大小不变,方向指向圆心.在竖直方向有竖直向下的分加速度,因此A 、B 都处于失重状态,A 错误,B 正确;对A 受力分析,加速度指向圆心,那么此过程中水平方向加速度逐渐减小,而能够提供A 水平加速度的力只有B 对A 的摩擦力,因此B 对A 的摩擦力越来越小,C 正确,D 错误.2.(多选)如图14所示,水平放置的两个用相同材料制成的轮P 和Q 靠摩擦传动,两轮的半径R ∶r =2∶1.当主动轮Q 匀速转动时,在Q 轮边缘上放置的小木块恰能相对静止在Q 轮边缘上,此时Q 轮转动的角速度为ω1,木块的向心加速度为a 1,若改变转速,把小木块放在P 轮边缘也恰能静止,此时Q 轮转动的角速度为ω2,木块的向心加速度为a 2,则( )图14A.ω1ω2=22B.ω1ω2=21C.a 1a 2=11D.a 1a 2=12答案 AC解析 根据题述,a 1=ω 21r ,ma 1=μmg ;联立解得μg =ω 21r .小木块放在P 轮边缘也恰能静止,μg =ω2R =2ω2r .由ωR =ω2r 联立解得ω1ω2=22,选项A 正确,B 错误;ma =μmg ,所以a 1a 2=11,选项C 正确,D 错误. 3.(2015·福建理综·17)如图15,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上.若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )图15A .t 1<t 2B .t 1=t 2C .t 1>t 2D .无法比较t 1、t 2的大小答案 A解析 在滑道AB 段上取任意一点E ,比较从A 点到E 点的速度v 1和从C 点到E 点的速度v 2易知,v 1>v 2.因E 点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A 滑到C 比由C 滑到A 在AB 段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC 段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C 处开始滑动时,小滑块损失的动能更大.故综上所述,从A 滑到C 比从C 滑到A 在轨道上因摩擦造成的动能损失要小,整个过程中从A 滑到C 平均速度要更大一些,故t 1<t 2.选项A 正确.4.(多选)如图16所示,一个固定在竖直平面内的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )图16A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB .小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N答案 AC解析 根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m /s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2B R,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.5.如图17所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k 倍,则:图17(1)当转盘的角速度为ω1= kg 2r 时,绳中的张力为多大? (2)当转盘的角速度为ω2= 3kg 2r时,绳中的张力为多大? 答案 (1)0 (2)12kmg 解析 (1)设静摩擦力达到最大,绳中开始出现张力时的角速度为ω0,则kmg =mω 20r ,得ω0= kg r 因为ω1<ω0,所以此时绳中的张力F 1=0.(2)因为ω2= 3kg 2r >ω0,所以绳中出现张力,由kmg +F 2=mω 22r 得F 2=mω 22r -kmg =m ( 3kg 2r )2r -kmg =12kmg .。