当前位置:文档之家› 高等数学部分易混淆概念及例题

高等数学部分易混淆概念及例题

高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确. 若()nn x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==. 例2.选择题 设nn n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0nn n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n nn n x y z n n =--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞ 不存在,所以B 选项不正确,因此选C . 例3.设,nn x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,nn x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim nn x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式 ()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果0lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x =,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞ lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大. 三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩四、如果0lim ()0x x f x →=不能退出limx x →例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则故无法讨论1()f x 在0x =的极限.结论:如果0lim ()0x x f x →=,且f∞.反之,()f x 为无穷大,则1()f x 为无穷小。

例7.求极限1lim ,lim xxx x ee →∞→解:lim ,lim 0x x xx e e →+∞→-∞=+∞=,因而x →∞时x e 极限不存在。

1100lim 0,lim x x x x e e →-→===+∞,因而0x →时1xe 极限不存在。

六、使用等价无穷小求极限时要注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。

这时,一般可以用泰勒公式来求极限。

(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8:求极限0x →2写成1)1)+,再用等价无穷小替换就会导致错误。

分析二:用泰勒公式22222211()122(1())22!11()122(1())222!1()4x x x x x x x x οοο-=+++-+-++-=-+ 原式2221()144x x x ο-+==-。

例9:求极限sin limx xxπ→解:本题切忌将sin x 用x 等价代换,导致结果为1。

sin sin lim0x x x πππ→==七、函数连续性的判断(1)设()f x 在0x x =间断,()g x2(),(),()g x f x f x ⋅在0x x =可能连续。

例10.设0()1x f x x ≠⎧=⎨=⎩,()g x ()()()sin 0x g x f x x ⋅=⋅=在0x =连续。

若设10()1x f x x ≥⎧=⎨-<⎩,()f x (2)“()f x 在0x 点连续”是“(f 分析:由“若0lim ()x x f x a →=,则x x →0()()f x f x =”,因此,()f x 在0x 点连续,则()f x 在0x 点连续。

再由例(3)()x ϕ在0xx =连续,()f u 在00()u u x ϕ==连续,则(())f x ϕ在0x x =连续。

其余结论均不一定成立。

第二章 导数与微分一、函数可导性与连续性的关系可导必连续,连续不一定可导。

例11.()f x x =在0x =连读,在0x =处不可导。

二、()f x 与()f x 可导性的关系(1)设0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条件。

(2)设0()0f x =,则0()0f x '=是()f x 在0x x =可导的充要条件。

三、一元函数可导函数与不可导函数乘积可导性的讨论设()()()F x g x x ϕ=,()x ϕ在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。

分析:若()0g a =,由定义()()()()()()()()()limlim lim ()()()x a x a x a F x F a g x x g a a g x g a F a x g a a x a x a x aϕϕϕϕ→→→---''====--- 反之,若()F a '存在,则必有()0g a =。

用反证法,假设()0g a ≠,则由商的求导法则知()()()F x x g x ϕ=在x a =可导,与假设矛盾。

利用上述结论,我们可以判断函数中带有绝对值函数的可导性。

四、在某点存在左右导数时原函数的性质(1)设()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在0x x =连续。

(2)如果()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+→-''==则()f x 在0x x =处必可导且0()f x m '=。

若没有如果()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+→-''==,则得不到任何结论。

例11.20()0x x f x xx +>⎧=⎨≤⎩,显然设00lim ()lim ()1x x f x f x →+→-''==,但0l i m ()2x f x →+=,0lim ()0x f x →-=,因此极限0lim ()x f x →不存在,从而()f x 在0x =处不连续不可导。

一、若lim (),(0,x f x A A →+∞'=≠可以取若lim ()0x f x A →+∞'=≠,不妨设A > ()()()(f x f X f x ξ'=+()()(2Af x f X ⇒≥+同理,当0A <时,lim ()x f x →+∞=-∞若lim (),0,x f x X x →+∞'=+∞⇒∃>≥()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()x f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理可证lim ()x f x →+∞'=-∞时,必有lim ()x f x →+∞=-∞第八章 多元函数微分法及其应用8.1多元函数的基本概念 1. 0ε∀ ,12,0δδ∃ ,使得当01x x δ- ,02y y δ- 且0,0(,)()x y x y ≠时,有(,)f x y A ε- ,那么00lim (,)x x y y f x y A →→=成立了吗?成立,与原来的极限差异只是描述动点(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的.2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么?如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由此对0ε∀ ,都有(,)f x y A ε- ,从而0,0()A f x y =,因此我们得到00lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.3. 多元函数的极限计算可以用洛必塔法则吗?为什么? 不可以,因为洛必塔法则的理论基础是柯西中值定理.8.2 偏导数 1. 已知2(,)y f x y e x y +=,求(,)f x y令x y u +=,y e v =那么解出x ,y 得ln ln y vx u v=⎧⎨=-⎩,所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==- 或者2(,)(ln ).ln f u v u v y =-8.3全微分极其应用1.写出多元函数连续,偏导存在,可微之间的关系 偏导数x f ', y f '偏导数x f ', y f '2. 判断二元函数对于函数(,f x y (0,0)lim x x f ∆→'=00(0,0)limy x x f ∆→∆→'=又005226(,)(0,0)(0,0)(0,0)limlim()()x x x x y y y y f x y f f x f yx yx y →→→→''∆∆--∆-∆∆∆=⎡⎤∆+∆⎣⎦令yk x ∆=∆,则上式为2135550022663()limlim 0(1)(1)x x k x k x k xk ∆→∆→∆=∆=+∆+因而(,)f x y 在原点处可微.8.4多元复合函数的求导法则 1. 设()xy zf x y=+,f 可微,求dz .22222()()()()()()()()()()()xy xy xy x y d xy xyd x y dz f d f x y x y x y x y xy y xy yf dx f dyx y x y x y x y +-+''==++++''=+++++8.5隐函数的求导1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数,证明..1x y zy z x∂∂∂=-∂∂∂. 对于方程(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导数y x F xy F '∂=-∂',z x F x z F '∂=-∂' 同理, z y F yz F '∂=-∂',所以.x y y z ∂∂∂∂8.6多元函数的极值及其求法 1.设(,)f x y 在点000(,)p x y ,命题是否正确?不正确,2.例如,二元函数(,)Zf x y =3=由二元函数极值判别法:2630zx x x∂=-=∂,解得 1x 60zy y∂==∂, 解得 0y = 故得驻点1(0,0)M =,2(2,0)M =2266z A x x ∂==-∂,20z B x y ∂==∂∂, 226z C y∂==∂236(1)AC B x -=-由于 2(0,0)0AC B - ,2(2,0)0AC B - ,以及(0,0)0A ,所以1(0,0)M =,是函数的惟一极小值点,但是(4,0)16(0,0)f f =- ,故(0,0)f 不是(,)f x y 在D上的最小值.第十一章 无穷级数11.1常数项级数的概念和性质1. 若通项0na →,则级数212121111()2n n n n n n nn a n∞=∞=∞==≤+∑收敛,这种说法是否正确?否2. 若级数1nn a∞=∑加括号后所成的新级数发散,则原级数必定发散,而加括号后所的级数收敛,则无法判定原级数的敛散性,这种说法是否正确?正确11.2常数项级数的审敛法 1. 若级数1nn u∞=∑收敛,则级数21nn u∞=∑一定收敛。

相关主题