当前位置:文档之家› 第1章 液态金属结构与性质

第1章 液态金属结构与性质

《材料成形基本原理》(3Ed-2016)
普通高等教育“十二五”国家级规划教材
国家级精品课程
国家级精品资源共享课
课件编制: 上篇 祖方遒 李萌盛
下篇 陈文琳
合肥工业大学
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
第一节 引言 第二节 液态金属的微观结构
第三节 液态金属的性质
它们的综合作用即为两原子 间的相互作用力F(合力)。
两个原子的相互作用势能
W(R)的曲线如图b所示
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
当R→∞时, F→0。 当两原子靠近时,原子间产生吸引力
国家级精品课程
双原子模型
(合力 F<0 )增大,到达R=R1时,F为最
国家级精品课程
偶分布函数 g(r)
物理意义:距某一参考粒子r处找到另一个粒子的几
率。 换言之,表示离开参考原子(处于坐标原点r = 0)距离为
r 位置的原子数密度 ρ(r) 对于平均数密度ρo(=N/V)的相对 偏差。
ρ(r) = ρo g (r)
图1-1 气体、液体、非晶及晶态固体的结构特点及衍射特征
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
液 体 性 质
物理性质:密度、粘度、电导率、热导率和扩散
系数等;
物理化学性质:等压热容、等容热容、熔化和气 化潜热、表面张力等;
热力学性质:蒸汽压、膨胀和压缩系数及其它。
合肥工业大学材料科学与工程学院制作
国家级精品课程
一、 液体的分类
按液体的构成类型,可分为:
原子液体(如液态金属、液化惰性气体)
分子液体(如极性与非极性分子液体),
离子液体(如各种简单的及复杂的熔盐)
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
二、 液体的表观特征
——分子不停地作无规律运动
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
液体:
长 程 无 序
—— 不具备平移、对称性;
近 程 有 序
—— 相对于完全无序的气体,液体中存在着许多不停
“游荡”着的局域有序的原子集团,液体结构表
现出局域范围的有序性。
《材料成形基本原理》(第3版)
国家级精品课程
径向分布函数

RDF
RDF = 4πr 2ρo g(r)
表示在 r 和 r + dr 之间的球壳中原子数的多少。
配位数N1:表示参考原子周围最近邻(第一壳层)的原子数。
配位数 N1 的求法:RDF第一峰之下的积分面积
N1
rm 2 4 g ( r ) r dr 0
r0
N1 与 r1 一起,被认为是液体最重要的结构参数。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
二、
由物质熔化过程认识液体结构
双原子模型
两个原子间:相互作用力F, 相互作用势能W与原子间距 离R的关系如图所示。
图a中虚线为引力与斥力,
具有流动性 (液体最显著的性质); 可完全占据容器的空间并取得容器内腔的形状 (类似于气 体,不同于固体); 不能够象固体那样承受剪切应力,表明液体的原子或分子之
间的结合力没有固体中强 (类似于气体,不同于固体);
具有自由表面 (类似于固体,不同于气体); 液体可压缩性很低 (类似于固体,不同于气体)。
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
三、液体的结构和性质与材料成形的关系
液体的界面张力、潜热等性质
凝固过程的形核及晶体生长的热力学 熔体的结构信息
凝固的微观机制
– –
液体的原子扩散系数、界面张力、传热系数、结晶潜热、 粘度等性质
成分偏析、固-液界面类型及晶体生长方式
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
平均原子间距 r1:
对液体(或非晶固体),对应于g(r)第一 峰的位置。 r = r1 表示参考原子至其周围第一配位层 各原子的平均原子间距。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
1),金属熔化时典型的体积变化Vm/VS(Vm为熔化时的体积增
量)为3~5%左右,表明液体的原子间距接近于固体,在熔点附
近其混乱度只是稍大于固体而远小于气体的混乱度。
金属熔化潜热Hm比其气化潜热Hb小得多(表1-2),为
1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
合肥工业大学材料科学与工程学院制作
第四节 液态金属的充型能力
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
第一节
引言
一、液体的分类
二、液体的表观特征 三、液体的结构、性质与材料成形的关系
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
T至熔点时,空穴骤然增多。 F-R曲线上,R超过R1,原 子间的引力急剧减小,从而 造成原子结合键突然破坏, 金属则从固态进入熔化状态。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
二、
由物质熔化过程认识液体结构
物质熔化时体积变化﹑熵变(及焓变)一般均不大(见表1-
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
在特定的温度下,虽然“能量起伏”和 “结构起伏”的存在,但对于某一特定的液 体,其团簇的统计平均尺寸是一定的。
然而,原子团簇平均尺寸随温度变化而变 化,温度越高原子团簇平均尺寸越小。
国家级精品课程
双原子模型
势能曲线极不对称: 向右是水平渐近线, 向左是垂直渐近线
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版) 每个原子在三维方向都有相邻原 子,频繁相互碰撞而交换能量。每 时每刻都有一些原子能量超过(或低 于)原子平均能量 (“能量起伏” ) 高能原子则可能越过势垒跑到原 子之间的间隙中或金属表面,而失 去大量能量,在新的位置上作微小 振动。一旦有机会获得大的能量, 又可以跑到新的位置上。(内蒸发) 原子离开点阵则留下了自由点 阵——空穴(物体膨胀的另一原因 ) T越高,空穴越多
大吸引力(能量曲线拐点)。 而后,吸引力随距离而减小,当达到
R=R0时,相互作用力等于零(F=0),
此时R0为平衡距离。(能量最低,状态 稳定)
dW ( R) F ( R0 ) dR
0
R R0
当距离小于平衡距离R0时,出现排 斥力(F>0),并随距离的继续缩短而 迅速增大。
合肥工业大学材料科学与工程学院制作
《材料成形基本原理》(第3版)
国家级精品课程
1. 液体粘度的定义
粘度系数---简称粘度(动力学粘度η),是 根据牛顿提出的数学关系式来定义的: o d VX dy
τ —— 平行于X方向作用于液体表面 表述为:液体流动的速度梯度 dVX/dy 粘度的物理意义可视为:作用于液体表
面的应力 τ大小与垂直于该平面方向上 与剪切应力 τ成正比。 ( X-Z 面) 的外加剪切应力, 的速度梯度的比例系数。 通常条件下,所有的液态金属符合牛顿 V X——液体在X方向的运动速度, 液体粘度量纲为[M / LT],常用单位 定律,被称为牛顿液体。 dV 表示沿 X/dy 为 Pa· S 或—— MPa· S。 Y方向的速度梯度。
易聚集在一起,把别的原于排挤到别处,表现
为游动原子团簇之间存在着成分差异 。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
对于“纯金属” :总存在大量杂质原子。
如:8N纯铁(分析纯只能达5N),则每
1cm3铁液中杂质原子数约相当于1015数量级。 对于合金,F(A-A、B-B)>F(A -B): 则A-A、 B-B原子聚集; F(A -B)>F(A-A、B-B):液体中形成新的化 学键 A-B原子聚集
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
(四) 实际液态金属的微观特点
对于“理想液体”,存在: “能量起伏” 及“结 构起伏” 对于实际液体, 还存在浓度起伏
“浓度起伏” ——同种元素及不同元素之间的
原子间结合力存在差别,结合力较强的原子容
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版) 特定T,R=R0 ,W=W0 T升高,能量从W0升高到 W1、W2、W3、W4 ,其间 距(振幅中心位置)将由R0 增大到R1、R2、R3、R4 。 原子热振动:沿势能曲线势 能与动能间发生转换。 原子间距离将随温度的升高 而增加,即产生热膨胀,但 并不改变原子相对排列(熔 点以下)。
相关主题