当前位置:文档之家› 关于连续系统Lyapunov指数的计算方法

关于连续系统Lyapunov指数的计算方法

1. 关于连续系统Lyapunov指数的计算方法连续系统LE的计算方法主要有定义方法、Jacobian方法、QR分解方法、奇异值分解方法,或者通过求解系统的微分方程,得到微分方程解的时间序列,然后利用时间序列(即离散系统)的LE求解方法来计算得到。

关于连续系统LE的计算,主要以定义方法、Jacobian方法做主要介绍内容。

(1)定义法关于定义法求解的程序,和matlab板块的“连续系统LE求解程序”差不多。

以Rossler系统为例Rossler系统微分方程定义程序function dX = Rossler_ly(t,X)% Rossler吸引子,用来计算Lyapunov指数% a=0.15,b=0.20,c=10.0% dx/dt = -y-z,% dy/dt = x+ay,% dz/dt = b+z(x-c),a = 0.15;b = 0.20;c = 10.0;x=X(1); y=X(2); z=X(3);% Y的三个列向量为相互正交的单位向量Y = [X(4), X(7), X(10);X(5), X(8), X(11);X(6), X(9), X(12)];% 输出向量的初始化,必不可少dX = zeros(12,1);% Rossler吸引子dX(1) = -y-z;dX(2) = x+a*y;dX(3) = b+z*(x-c);% Rossler吸引子的Jacobi矩阵Jaco = [0 -1 -1;1 a 0;z 0 x-c];dX(4:12) = Jaco*Y;求解LE代码:% 计算Rossler吸引子的Lyapunov指数clear;yinit = [1,1,1];orthmatrix = [1 0 0;0 1 0;0 0 1];a = 0.15;b = 0.20;c = 10.0;y = zeros(12,1);% 初始化输入y(1:3) = yinit;y(4:12) = orthmatrix;tstart = 0; % 时间初始值tstep = 1e-3; % 时间步长wholetimes = 1e5; % 总的循环次数steps = 10; % 每次演化的步数iteratetimes = wholetimes/steps; % 演化的次数mod = zeros(3,1);lp = zeros(3,1);% 初始化三个Lyapunov指数Lyapunov1 = zeros(iteratetimes,1); Lyapunov2 = zeros(iteratetimes,1); Lyapunov3 = zeros(iteratetimes,1);for i=1:iteratetimestspan = tstart:tstep tstart + tstep*steps);[T,Y] = ode45('Rossler_ly', tspan, y);% 取积分得到的最后一个时刻的值y = Y(size(Y,1),;% 重新定义起始时刻tstart = tstart + tstep*steps;y0 = [y(4) y(7) y(10);y(5) y(8) y(11);y(6) y(9) y(12)];%正交化y0 = ThreeGS(y0);% 取三个向量的模mod(1) = sqrt(y0(:,1)'*y0(:,1));mod(2) = sqrt(y0(:,2)'*y0(:,2));mod(3) = sqrt(y0(:,3)'*y0(:,3));y0(:,1) = y0(:,1)/mod(1);y0(:,2) = y0(:,2)/mod(2);y0(:,3) = y0(:,3)/mod(3);lp = lp+log(abs(mod));%三个Lyapunov指数Lyapunov1(i) = lp(1)/(tstart);Lyapunov2(i) = lp(2)/(tstart);Lyapunov3(i) = lp(3)/(tstart);y(4:12) = y0';end% 作Lyapunov指数谱图i = 1:iteratetimes;plot(i,Lyapunov1,i,Lyapunov2,i,Lyapunov3)程序中用到的ThreeGS程序如下:%G-S正交化function A = ThreeGS(V) % V 为3*3向量v1 = V(:,1);v2 = V(:,2);v3 = V(:,3);a1 = zeros(3,1);a2 = zeros(3,1);a3 = zeros(3,1);a1 = v1;a2 = v2-((a1'*v2)/(a1'*a1))*a1;a3 = v3-((a1'*v3)/(a1'*a1))*a1-((a2'*v3)/(a2'*a2))*a2;A = [a1,a2,a3];计算得到的Rossler系统的LE为―――― 0.063231 0.092635 -9.8924Wolf文章中计算得到的Rossler系统的LE为――――0.09 0 -9.77需要注意的是――定义法求解的精度有限,对有些系统的计算往往出现计果和理论值有偏差的现象。

正交化程序可以根据上面的扩展到N*N向量,这里就不加以说明了,对matlab用户来说应该还是比较简单的!(2)Jacobian方法通过资料检索,发现论坛中用的较多的LET工具箱的算法原理就是Jacobian方法。

基本原理就是首先求解出连续系统微分方程的近似解,然后对系统的Jacobian矩阵进行QR 分解,计算Jacobian矩阵特征值的乘积,最后计算出LE和分数维。

经过计算也证明了这种方法精度较高,对目前常见的混沌系统,如Lorenz、Henon、Duffing 等的Lyapunov指数的计算精度都很高,而且程序编写有一定的规范,个人很推荐使用。

(虽然我自己要做的系统并不适用)LET工具箱可以在网络上找到,这里就不列出了!关于LET工具箱如果有问题,欢迎加入本帖讨论!对离散动力系统,或者说是非线性时间序列,往往不需要计算出所有的Lyapunov指数,通常只需计算出其最大的Lyapunov指数即可。

“1983年,格里波基证明了只要最大Lyapunov 指数大于零,就可以肯定混沌的存在”。

目前常用的计算混沌序列最大Lyapunov指数的方法主要有一下几种:(1)由定义法延伸的Nicolis方法(2)Jacobian方法(3)Wolf方法(4)P-范数方法(5)小数据量方法其中以Wolf方法和小数据量方法应用最为广泛,也最为普遍。

下面对Nicolis方法、Wolf方法以及小数据量方法作一一介绍。

(1)Nicolis方法这种方法和连续系统的定义方法类似,而且目前应用很有限制,因此只对其理论进行介绍,编程应用方面就省略了(2)Wolf方法Wolf方法的Matlab程序如下:function lambda_1=lyapunov_wolf(data,N,m,tau,P)% 该函数用来计算时间序列的最大Lyapunov 指数--Wolf 方法% m: 嵌入维数% tau:时间延迟% data:时间序列% N:时间序列长度%P:时间序列的平均周期,选择演化相点距当前点的位置差,即若当前相点为I,则演化相点只能在|I-J|>P的相点中搜寻% lambda_1:返回最大lyapunov指数值min_point=1 ; %&&要求最少搜索到的点数MAX_CISHU=5 ; %&&最大增加搜索范围次数%FLYINGHAWK% 求最大、最小和平均相点距离max_d = 0; %最大相点距离min_d = 1.0e+100; %最小相点距离avg_dd = 0;Y=reconstitution(data,N,m,tau); %相空间重构M=N-(m-1)*tau; %重构相空间中相点的个数for i = 1 : (M-1)for j = i+1 : Md = 0;for k = 1 : md = d + (Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,j));endd = sqrt(d);if max_d < dmax_d = d;endif min_d > dmin_d = d;endavg_dd = avg_dd + d;endendavg_d = 2*avg_dd/(M*(M-1)); %平均相点距离dlt_eps = (avg_d - min_d) * 0.02 ; %若在min_eps~max_eps中找不到演化相点时,对max_eps的放宽幅度min_eps = min_d + dlt_eps / 2 ; %演化相点与当前相点距离的最小限max_eps = min_d + 2 * dlt_eps ; %&&演化相点与当前相点距离的最大限% 从P+1~M-1个相点中找与第一个相点最近的相点位置(Loc_DK)及其最短距离DKDK = 1.0e+100; %第i个相点到其最近距离点的距离Loc_DK = 2; %第i个相点对应的最近距离点的下标for i = (P+1): ( M-1) %限制短暂分离,从点P+1开始搜索d = 0;for k = 1 : md = d + (Y(k,i)-Y(k,1))*(Y(k,i)-Y(k,1));endd = sqrt(d);if (d < DK) & (d > min_eps)DK = d;Loc_DK = i;endend% 以下计算各相点对应的李氏数保存到lmd()数组中% i 为相点序号,从1到(M-1),也是i-1点的演化点;Loc_DK为相点i-1对应最短距离的相点位置,DK为其对应的最短距离% Loc_DK+1为Loc_DK的演化点,DK1为i点到Loc_DK+1点的距离,称为演化距离% 前i个log2(DK1/DK)的累计和用于求i点的lambda值sum_lmd = 0 ; % 存放前i个log2(DK1/DK)的累计和for i = 2 : (M-1) % 计算演化距离DK1 = 0;for k = 1 : mDK1 = DK1 + (Y(k,i)-Y(k,Loc_DK+1))*(Y(k,i)-Y(k,Loc_DK+1));endDK1 = sqrt(DK1);old_Loc_DK = Loc_DK ; % 保存原最近位置相点old_DK=DK;% 计算前i个log2(DK1/DK)的累计和以及保存i点的李氏指数if (DK1 ~= 0)&( DK ~= 0)sum_lmd = sum_lmd + log(DK1/DK) /log(2);endlmd(i-1) = sum_lmd/(i-1);% 以下寻找i点的最短距离:要求距离在指定距离范围内尽量短,与DK1的角度最小point_num = 0 ; % &&在指定距离范围内找到的候选相点的个数cos_sita = 0 ; %&&夹角余弦的比较初值――要求一定是锐角zjfwcs=0 ;%&&增加范围次数while (point_num == 0)% * 搜索相点for j = 1 : (M-1)if abs(j-i) <=(P-1) %&&候选点距当前点太近,跳过!continue;end%*计算候选点与当前点的距离dnew = 0;for k = 1 : mdnew = dnew + (Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,j));enddnew = sqrt(dnew);if (dnew < min_eps)|( dnew > max_eps ) %&&不在距离范围,跳过!continue;end%*计算夹角余弦及比较DOT = 0;for k = 1 : mDOT = DOT+(Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,old_Loc_DK+1));endCTH = DOT/(dnew*DK1);if acos(CTH) > (3.14151926/4) %&&不是小于45度的角,跳过!continue;endif CTH > cos_sita %&&新夹角小于过去已找到的相点的夹角,保留cos_sita = CTH;Loc_DK = j;DK = dnew;endpoint_num = point_num +1;endif point_num <= min_pointmax_eps = max_eps + dlt_eps;zjfwcs =zjfwcs +1;if zjfwcs > MAX_CISHU %&&超过最大放宽次数,改找最近的点DK = 1.0e+100;for ii = 1 : (M-1)if abs(i-ii) <= (P-1) %&&候选点距当前点太近,跳过!continue;endd = 0;for k = 1 : md = d + (Y(k,i)-Y(k,ii))*(Y(k,i)-Y(k,ii));endd = sqrt(d);if (d < DK) & (d > min_eps)DK = d;Loc_DK = ii;endendbreak;endpoint_num = 0 ; %&&扩大距离范围后重新搜索cos_sita = 0;endendend%取平均得到最大李雅普诺夫指数lambda_1=sum(lmd)/length(lmd);程序中用到的reconstitution函数如下:function X=reconstitution(data,N,m,tau)%该函数用来重构相空间% m为嵌入空间维数% tau为时间延迟% data为输入时间序列% N为时间序列长度% X为输出,是m*n维矩阵M=N-(m-1)*tau;%相空间中点的个数for j=1:M %相空间重构for i=1:mX(i,j)=data((i-1)*tau+j);endend。

相关主题