当前位置:文档之家› 利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题惠州市华罗庚中学 欧阳勇摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。

处理数列型不等式最重要要的方法为放缩法。

放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。

对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。

关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体:一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。

裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。

例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。

设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。

证明:易得12(21)(21),3n nn S +=--1132311()2(21)(21)22121n n n n n n T ++==-----, 112231113113111111()()221212212121212121nn i i i n n i i T ++===-=-+-++---------∑∑ =113113()221212n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。

例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-;(I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。

证明:(I )1111111()2322122n n T T n n n n n n+-=+++-++++++++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-++-+由(I )可知n T 递增,从而12222n n T T T --≥≥≥,又11217,1,212T S T ===,即当2n ≥时,2n S 71112n +≥。

点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。

用于解决积式问题。

例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。

若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N ,不等式312111(1)(1+)(1+)31nn c c c +⋅⋅>+恒成立. 证明: 32n c n =-,331313133131(1+)()323231332n n n n n n c n n n n n --++=>⋅⋅=---- 所以3121114731[(1)(1+)(1+)]311432n n n c c c n ++⋅⋅>⋅⋅⋅=+-312111(1)(1+)(1+)31nn c c c +⋅⋅>+ 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。

33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=---- 而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。

3、迭代放缩法:通过放缩法构造递推不等关系,进行迭代,从而求解。

例4 已知数列{}n x 满足,1111,,*21n n x x n N x +==∈+,证明:1112||()65n n n x x -+-≤⋅。

证明:当1n =时,1211||||6n n x x x x +-=-=,结论成立。

当2n ≥时,易知1111101,12,12n n n n x x x x ---<<+<=>+点评:此题将目标式进行放缩得到递推不等关系,进行迭代,找到解题途径。

4、等比公式放缩法:先放缩构造成等比数列,再求和,最后二次放缩实现目标转化。

例5已知数列{}n a 的各项均为正数,且满足111122,(),1n nn n a a a n N a a *++-==∈-记2n n n b a a =-,数列{}n b 的前n 项和为n x ,且1()2n n f x x =. (I )数列{}n b 和{}n a 的通项公式; (II )求证:12231()()()1()2()()()2n n fx f x f x n nn N f x f x f x *+-<+++<∈.略解:(I ) 2nn b =,n a =,()21nn f x =-。

证明:(II )11()21211, 1()2122(2)2n n n n n n f x f x ++--==<-- 12231()()()()()()2n n f x f x f x nf x f x f x +∴+++<.∴12231()()()12()()()2n n f x f x f x n nf x f x f x +-<+++<.反思:右边是2n ,感觉是n 个12的和,而中间刚好是n 项,所以利用1211212n n +-<-;左边是12n -不能用同样的方式来实现,想到11(())(()0)222n n f n f n -=-+>,试着考虑将12121n n +--缩小成1({}2n n c c -是等比数列),从而找到了此题的突破口。

5、二项式定理放缩法:在证明与指数有关的数列型不等式时,用二项式定理放缩特别有效。

二项式定理放缩法有两种常见类型:(1)部分二项式定理放缩法:即只在式子的某一部分用二项式定理放缩。

例6已知数列{}n a 满足a a =1(2)a ≠-,1(46)41021n n n a n a n ++++=+(n *∈N ).(Ⅰ)证明数列221n a n +⎧⎫⎨⎬+⎩⎭是等比数列,并求出通项n a ;(Ⅱ)如果1a =时,设数列{}n a 的前n 项和为n S ,试求出n S ,并证明当3n ≥时,有34111110n S S S +++<. 略解: 223)12)(2(1-⋅++=-n n n a a (*n N ∈), 则(21)(21)nn S n =--. nn n n n n n C C C C ++++=-1102 ,∴当3≥n 时,01122(1)n n nnn n n C C C C n -=+++≥+,则1212+≥-n n . )12)(12(+-≥∴n n S n ,则)121121(21)12)(12(11+--=+-≤n n n n S n . 因此,)]121121()9171()7151[(2111143+--++-+-≤+++n n S S S n 101)12151(21<+-=n . 反思:为什么会想到将11(21)(21)nn S n =--放缩成1(21)(21)n n -+?联想到1111111223(1)1n n n ++=-<⋅⋅⋅++,因为要证明110<,而34111nS S S +++是一个数列前n 项的和,最后通过放缩很可能变成1()(()0)10f n f n ->的形式,而110应是由31137S =⋅放缩后裂项而成,311111()35235S <=-⋅,111(21)(21)(21)(21)nn S n n n =≤---+ 111()22121n n =--+,此时刚好得到341111111()252110n S S S n +++≤-<+,接下来就要处理1212+≥-n n,想到用二项式定理。

(2)完全二项式定理放缩法:整个式子的证明主要借助于二项式定理。

例7设数列{}n a 的前n 项和为n S ,且对任意的*n N ∈,都有30,n n n a S a >=++.(I)求12,a a 的值;(II )求数列{}n a 的通项公式n a ;(III )证明:21221n n nn n n a a a +-≥+。

略解:(I )(II )121,2a a ==,n a n =;证明(III )012233(1),n n n n n x C C x C x C x +=++++133551(1)(1)22222n n n n n n x x C x C x C xC x nx +--=++≥=,令12x n=, 则有11(1)(1)122n n n n+--≥,从而(21)(2)(21)n n n n n n +≥+-,即21221n n nn n n a a a +-≥+。

点评:利用二项式定理结合放缩法证明不等式时,一定要紧密结合二项式展开式的特点,联系需证不等式的结构,通过化简、变形、换元等手段使问题得以解决。

6、比较放缩法:比较法与放缩法的结合,先进行比较(作差或作商),再进行放缩。

例8在单调递增数列}{n a 中,11=a ,22=a ,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(I )分别计算3a ,5a 和4a ,6a 的值;(II )求数列}{n a 的通项公式(将n a 用n 表示); (III )设数列}1{n a 的前n 项和为n S ,证明:24+<n nS n ,*n N ∈.略解:(I )(II )得33a =,492a =,56a =,68a =.⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2证明:(III )由(II ),得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812. 显然,2114341111+⨯=<==a S ; 当n 为偶数时,11480222n n n ⎛⎫=--= ⎪++⎝⎭; 当n 为奇数(3≥n )时,14144(1)8422(1)2(1)(3)2n n n n n n n S S n a n n n n n ---=+-<+-++-++++128401(1)(3)2(1)(2)(3)n n n n n n n n n ⎡⎤-=+-=-<⎢⎥+++++++⎣⎦.综上所述,402n n S n -<+,即24+<n nS n ,*n N ∈. 点评: 此题在作差比较中实施裂项放缩,进而得到最后结果小于0,从而得证。

相关主题