当前位置:文档之家› 普通物理学第五版第6章气体动理论答案

普通物理学第五版第6章气体动理论答案


e-bu
2
udu
=
1 2b
)
结束 目录
解: v = π8 kmT = 2 π2 kmT
(
1 v
)
=

0
(
1 v
)
f
(v)dv
=

0
(
1 v
) 4π(
m
2πkT
)3 2
e
mv 2
2kT v 2dv
=
∞ 4π(
0
m
2πkT
)3
2
e
mv 2
2kT v dv
= 4π(
m
2πkT
)3 2(
2kT 2m
)
=π2 ( 2mkπT )1 2 = π4 v1
结束 目录
解:P = ( h1 h2)d =(0.76 0.60)×1.33×105 Pa
V = 0.28×2.0×10-4 =5.6×10-4 m3
T = 273+27=300 K
M = 0.004 kg/mol
PV
=
m M
RT
m
=
M PV RT
=
0.04×0.16×1.33×105×5.6×10-4 8.31×300
结束 目录
6-5 计算在300K温度下,氢、氧和水银 蒸汽分子的方均根速率和平均平动动能。
结束 目录
解:(1)
Mo2=32×10-3 kg/mol MH2=2×10-3 kg/mol MHg=202×10-3 kg/mol
v2 =
3 RT M
v = 2 H2
v2
o2
=
v2 Hg
=
(1)平均平动动能
明电子气中电子的平均动能
w
=
3 5
(
1 2
m
vF2
)
=
3 5
EF
此处EF 叫做费米能。
结束 目录
解:(1)
dN N
=
4πv 2Adv
N
0
由归一化条件:
vF > v > 0 v > vF
dN N
=
vF 0
4πv 2Adv
N=
4πA
N
1 =
3N
4πvF3
结束 目录
(2)
v2
10 (
)2
( ) 2182
2182

Δn 1 Δn 2
=
(
3000)2 2182
e
e
(3000 ) 2
2182
=
0.78
结束 目录
6-11 求氢气在 300K 时 分 子 速 率 在 vp-10m/s 与 vp+10m/s 之间的分子数所 占的百分比。
结束 目录
解:
Δnn= π4 x 2e -x 2Δx
结束 目录
解: T = 273+ 300 =573K
vp =
2RT MH 2
=
2×8.31×573 0.002
=
2182
m/s
Δn= π4 nx 2e -x 2Δx
速率在3000-3010m/s之间的分子数为:
Δn 1 =
π4 n
(
3000)2 2182
e
3000
10 (
)
2
( ) 2182
2182
结束 目录
解:
ΔE
=
i 2
RΔT
i
=
2ΔE RΔT
=
2×2.09 ×102 8.31×10
=
5.03
5
结束 目录
6-17 导体中共有N个自由电子。电子气
中电子的最大速率vF叫费米速率。电子的速 率在 v→v+dv 的概率为:
dN N
=
4πv 2Adv
N
0
vF > v > 0 v > vF
式中A为常量。(1)由归一化条件求A;(2)证
=1.92×10-5kg
结束 目录
6-2 一体积为1.0×10-3 m3 的容器中, 含有4.0×10-5 kg的氦气和4.0×10-5 kg的 氢气,它们的温度为 300C,试求容器中混 合气体的压强。
结束 目录
解: T = 273+30=303 K
He的摩尔质量 M 1= 4.1×10-3kg/mol
结束 目录
解:
PV
=
m M
RT
T
=
PVM mR
=1.013×105×1.54×10-3×
32×10-3 2×10-3×8.31
=3×102 K
w
=
3 2
k
T
=
3 2
×1.38×10-23×3×102
= 6.2×10-21 J
结束 目录
6-16 容器内储有1mol的某种气体,今 从外界输入2.09×102J的热量,测得其温 度升高10K,球该气体分子的自由度。
结束 目录
解:将麦克斯韦速率分布公式改写为:
Δn= π4 nx 2e -x 2Δx
式中 x =
v vp
Δx
=
Δv vp
∵ v=vp
∴ x =1
Δv= 0.01vp Δx = 0.01
Δn= π4 nx 2e -x 2Δx
= π4 e -1×0.01= 0.83%
结束 目录
6-7 求(1)速度大小在0与vp之间的气体分 子的平均速率;(2)速度大小比vp大的气体分子 的平均速率。
结束 目录
解:
n=
P kT
=
1.33×10-3 1.38×10-23×300
= 3.22×1017 个/m3
l=
1
2πd 2n
1 = 2×3.04×(3.0×10-10)2×3.2×1017
= 7.84m
结束 目录
6-19 在标准状态下氦气(He)的黏度 η =1.89×10-5 Pa.s,又Mmol =0.0040 kg/mol,v = 1.20×103 m/s,试求; (1)在标准状态下氦原子的平均自由程。 (2)氦原子的半径。
3× 8.31×300 2×10-3
= 1934m/s
3× 8.31×300 32×10-3
= 484m/s
3× 8.31×300 202
= 193m/s
Ek = 23kT = 23×1.38×10-23×300
= 6.21×10-21 J
结束 目录
6-6 求速度大小在vp与1.01vp之间的气 体分子数占总分子数的百分比.
解:
v
=
Σvi N N
i
v
=
2v0+
6v0
+15v0+16v0+15v0+12v0+ 7v0 20
v2 =
Σv 2i N i N
=
2 v 0 2 +3(2v0)2 +5(3v0)2 +4(4v0)2 +3(5v0)2 +2(6v0)2 + ( 7 v 0 ) 2 20
= 3.99v0 vp = 3v0
0.84 )
= 1.4vp
结束 目录
6-8 遵守麦克斯韦速率分布的分子的
最概然能量Ep等于什么量值?它就是
1 2
m
vp
吗?
结束 目录
解:设每个分子的质量为m ,则一个分子的
动能为:
E
=
1 2
m
v
2
根据麦克斯韦能量分布函数
d
NE
=
2N
π
(k
T
)
3 2
E
E e kT dE
dNE dE
=
2N
π
(kT
)
提示:
2 p
01e- x2dx =0.847
2 p
0∞e- x2dx =1
结束 目录
解:(1)
v=
v0pv dN vp dN
0
=
vp 0
v
3e
vp 0
v
2e
dv v 2
v
2
p
dv v 2
v
2
p

x=
v vp
dv= vp dx
v
=
vp
1 0
1 0
x 3e-x
2 dx
x 2e-x 2 dx
l
´
1
l
´
2
=
m1 m2
=
7 34
结束 目录
6-4 20个质点的速率如下:
2个具有速率v0, 3个具有速率2v0, 5个具有速率3v0, 4个具有速率4v0, 3个具有速率5v0, 2个具有速率6v0, 1个具有速率7v0。 试计算: (1)平均速率;
(2)方均根速率;
(3)最概然速率。
结束 目录
结束 目录
6-3 一封闭的圆筒,内部被导热的不漏 气的可移动活塞隔为两部分。最初,活塞位 于筒中央,圆筒两侧的长度 l1= l2。 当两侧 各充以T1、p1,与T2、p2的相同气体后,问 平衡时活塞将在什么位置上( 即 l1/l2 是多 少)?已知 p1=1.013×105Pa, T2= 680K, p2 = 2.026×105Pa, T2 =280K。
vp =
2RT MH 2
=
2×8.31×300 0.002
=
1579
m/s
Δn n
=
4
π
1579-10 1579
2
e
( 1579-10 )2
相关主题