当前位置:
文档之家› 传热学-第二章-导热基本定律及稳态导热
传热学-第二章-导热基本定律及稳态导热
dQx qx dydz d
[J]
d 时间内、沿 x 轴方向、经 x+dx 表面导出的热量:
dQxdx qxdx dydz d [J]
ห้องสมุดไป่ตู้
qxdx
qx
qx x
dx
d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
气体的压力升高时:气体的密度增大、平均自由行程 减小、而两者的乘积保持不变。
除非压力很低或很高,在2.67*10-3MPa ~ 2.0*103MPa范围内, 气体的热导率基本不随压力变化
气体的温度升高时:气体分子运动速度和定容比热随T升高 而增大。 气体的热导率随温度升高而增大
混合气体热导率不能用部分求和的方法求;只能靠实验测定
热流密度矢量:等温面上某点,以通过该点处最大热流密度的
方向为方向、数值上正好等于沿该方向的热
流密度 q
直角坐标系中:
q
q
q qx i qy j qz k
q q cos
二、导热基本定律(Fourier’s law)
1822年,法国数学家傅里叶(Fourier)在实验研究基础上, 发现导热基本规律 —— 傅里叶定律
3、时间条件
说明在时间上导热过程进行的特点
x
y
z
直角坐标系:(Cartesian coordinates)
grad t t i t j t k
x
y
z
注:温度梯度是向量;正向朝着温度增加的方向
热流密度矢量 (Heat flux)
热流密度:单位时间、单位面积上所传递的热量;
不同方向上的热流密度的大小不同
q W m2
[J]
d 时间内、沿 y 轴方向导入与导出微元体净热量:
dQy
dQydy
qy y
dxdydz d
[J]
d 时间内、沿 z 轴方向导入与导出微元体净热量:
dQz
dQzdz
qz z
dxdydz d
[J]
[导入与导出净热量]:
[1] [dQx dQxdx ] [dQy dQydy ] [dQz dQzdz ]
黄铜 109w/m.0c 黄铜:70%Cu, 30%Zn
金属的加工过程也会造成晶格的缺陷
合金的导热:依靠自由电子的迁移和晶格的振动; 主要依靠后者
T
温度升高、晶格振动加强、导热增强
(2) 非金属的热导率:
非金属的导热:依靠晶格的振动传递热量;比较小 建筑隔热保温材料: 0.025~3 W (m C)
y
t k
z
qx
t x
;
qy
t y
;
qz
t z
注:傅里叶定律只适用于各向同性材料
各向同性材料:热导率在各个方向是相同的
有些天然和人造材料,如:石英、木材、叠层塑料板、叠层 金属板,其导热系数随方向而变化 —— 各向异性材料
各向异性材料中:
qx
xx
t x
第二章 导热基本定律及稳态导热
§2-1 导热基本定律
一、温度场(Temperature field) 某时刻空间所有各点温度分布的总称
温度场是时间和空间的函数,即: t = f ( r, )
稳态温度场 Steady-state conduction)
非稳态温度场 (Transient conduction)
d 时间内微元体中内热源的发热量: [2] qv dxdydz d [J]
3、微元体热力学能的增量
d 时间内微元体中热力学能的增量:
[3] c t dxdydz d [J]
(mcdt dxdydzc t d )
由 [1]+ [2]= [3]:
水和甘油等强缔合液体,分子量变化,并随温度而变 化。在不同温度下,热导率随温度的变化规律不一样
液体的热导率随压力p的升高而增大
p
3、固体的热导率
(1) 金属的热导率:
金属 12~418 W (m C)
纯金属的导热:依靠自由电子的迁移和晶格的振动 主要依靠前者
金属导热与导电机理一致;良导电体为良导热体:
xy
t y
xz
t z
qy
yx
t x
yy
t y
yz
t z
qz
zx
t x
zy
t y
zz
t z
三、热导率( Thermal conductivity )
q
-grad t
— 物质的重要热物性参数
热导率的数值:就是物体中单位温度梯度、单位时间、通过
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
1、几何条件
说明导热体的几何形状和大小
如:平壁或圆筒壁;厚度、直径等
2、物理条件
说明导热体的物理特征
如:物性参数 、c 和 的数值,是否随温度变化;
有无内热源、大小和分布;是否各向同性
c 2 — 拉普拉斯算子
热扩散率 a 反映了导热过程中材料的导热能力( )
与沿途物质储热能力( c )之间的关系
a 值大,即 值大或 c 值小,说明物体的某一部分
一旦获得热量,该热量能在整个物体中很快扩散
热扩散率表征物体被加热或冷却时,物体内各部分 温度趋向于均匀一致的能力
在同样加热条件下,物体的热扩散率越大,物体内部各处 的温度差别越小。
[1] ( qx qy qz )dxdydzd
[J]
x y z
傅里叶定律:
qx
t ; x
qy
t y
;
qz
t z
[1]
x
(
t x
)
y
(
t y
)
z
(
t z
)
dxdydzd
[J]
2、微元体中内热源的发热量
极短时间(如10)产生极大的热流密度的热量传递现象, 如 激光加工过程。
极低温度(接近于0 K)时的导热问题。
导热过程的单值性条件
导热微分方程式的理论基础:傅里叶定律 + 热力学第一定律 它描写物体的温度随时间和空间变化的关系; 它没有涉及具体、特定的导热过程。通用表达式。
对特定的导热过程:需要得到满足该过程的补充 说明条件的唯一解
银 铜 金 铝
T
— 晶格振动的加强干扰自由电子运动 10K:Cu 12000 W (m C) 15K : Cu 7000 W (m C)
合金:金属中掺入任何杂质将破坏晶格的完整性,
干扰自由电子的运动
合金 纯金属
如常温下: 纯铜 398w/m.0c
分子质量小的气体(H2、He)热导率较大 — 分子运动速度高
2、液体的热导率 液体 0.07~0.7 W (m C)
20 C : 水 0.6 W (m C)
液体的导热:主要依靠晶格的振动 晶格:理想的晶体中分子在无限大空间里排列成周期性点
阵,即所谓晶格 大多数液体(分子量M不变): T
确定热流密度的大小,应知道物体内的温度场: t f (x, y, z, )
确定导热体内的温度分布是导热理论的首要任务 一、导热微分方程式
理论基础:傅里叶定律 + 热力学第一定律
化学反应
假设:(1) 所研究的物体是各向同性的连续介质 发射药熔
(2) 热导率、比热容和密度均为已知
化过程
(3) 物体内具有内热源;强度 qv [W/m3]; 内热源均匀分布;qv 表示单位体积的导热
q
gradt
t
i
t r
j1 r
t
k
r
1 sin
t
c
t
1 r2
r
(r2
t ) r
1 r2 sin
( sin
t )
r2
1 sin2
(
t
)
qv
导热微分方程式的不适应范围: 非傅里叶导热过程
单位面积的导热量
W (m C)
热导率的数值表征物质导热能力大小。实验测定
影响热导率的因素:物质的种类、材料成分、温度、湿度、 压力、密度等
金属 非金属; 固相 液相 气相
不同物质热导率的差异:构造差别、导热机理不同
1、气体的热导率
气体 0.006~0.6 W (m C)
c t
1 r
r
(r
t r
)
1 r2
(
t
)
z
(
t z
)
qv
球坐标系
(r, ,)
qr
t r
q
1 r
t
q
1
r sin
t
x r sin cos; y r sin sin; z r cos
t 0 t f (r)
t f (r, )
等温面与等温线