电磁感应定律应用【学习目标】1.了解感生电动势和动生电动势的概念及不同。
2.了解感生电动势和动生电动势产生的原因。
3.能用动生电动势和感生电动势的公式进行分析和计算。
【要点梳理】知识点一、感生电动势和动生电动势由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。
1.感应电场19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。
静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。
要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。
感应电流的方向与感应电场的方向相同。
2.感生电动势(1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。
(2)定义:由感生电场产生的感应电动势成为感生电动势。
(3)感生电场方向判断:右手螺旋定则。
3、感生电动势的产生由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。
变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。
其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。
例如磁场变化时产生的感应电动势为cos B E nS t∆θ∆= .知识点二、洛伦兹力与动生电动势导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的?1、动生电动势(1)产生:导体切割磁感线运动产生动生电动势(2)大小:E BLv =(B 的方向与v 的方向垂直)(3)动生电动势大小的推导:ab 棒处于匀强磁场中,磁感应强度为B ,垂直纸面向里,棒沿光滑导轨以速度v 匀速向右滑动,已知导轨宽度为L ,经过时间t 由M 运动导N ,如图所示,由法拉第电磁感应定律可得: ФBS B L vt E BLv t t t∆∆⋅⋅====. 故动生电动势大小为E BLv =.2、动生电动势原因分析导体在磁场中切割磁感线时,产生动生电动势,它是由于导体中的自由电子受到洛伦兹力的作用而引起的。
如图甲所示,一条直导线CD 在匀强磁场B 中以速度v 向右运动,并且导线CD 与B v 、的方向垂直,由于导体中的自由电子随导体一起以速度v 运动,因此每个电子受到的洛伦兹力为:F Bev =洛F 洛的方向竖直向下,在力F 洛的作用下,自由电子沿导体向下运动,使导体下端出现过剩的负电荷,导体上端出现过剩的正电荷,结果使导体上端D 的电势高于下端C 的电势,出现由D 指向C 的静电场,此电场对电子的静电力F ′的方向向上,与洛伦兹力F 洛方向相反,随着导体两端正负电荷的积累,电场不断增强,当作用在自由电子上的静电力与电子受到的洛伦兹力相平衡时,DC 两端产生一个稳定的电势差。
如果用另外的导线把CD 两端连接起来,由于D 段的电势比C 段的电势高,自由电子在静电力的作用下将在导线框中沿顺时针流动,形成逆时针方向的电流,如图乙所示。
电荷的流动使CD 两端积累的电荷不断减少,洛伦兹力又不断使自由电子从D 端运动到C 端从而在CD 两端维持一个稳定的电动势。
可见运动的导体CD 就是一个电源,D 端是电源的正极,C 端是电源的负极,自由电子受洛伦兹力的用,从D 端搬运到C 端,也可以看做是正电荷受洛伦兹力作用从C 端搬运到D端,这里洛伦兹力就相当于电源中的非静电力,根据电动势的定义,电动势等于单位正电荷从负极通过电源内部移动到电源的正极非静电力所做的功,作用在单位电荷上的洛伦兹力为:==/F F e Bv.洛于是动生电动势就是:E FL BLv==.上式与法拉第电磁感应定律得到的结果一致。
知识点三、动生电动势和感生电动势具有相对性动生电动势和感生电动势的划分,在某些情况下只有相对意义,如本章开始的实验中,将条形磁铁插入线圈中,如果在相对于磁铁静止的参考系观察,磁铁不动,空间各点的磁场也没有发生变化,而线圈在运动,线圈中的电动势是动生的;但是,如果在相对于线圈静止的参考系内观察,则看到磁铁在运动,引起空间磁场发生变化,因而,线圈中的电动势是感生的,在这种情况下,究竟把电动势看作动生的还是感生的,决定于观察者所在的参考系,然而,并不是在任何情况下都能通过转换参考系把一种电动势归结为另一种电动势,不管是哪一种电动势,法拉第电磁感应定律、楞次定律都成立。
知识点四、应用——电子感应加速器即使没有导体存在,变化的磁场以在空间激发涡旋状的感应电场,电子感应器就是应用了这个原理,电子加速器是加速电子的装置,他的主要部分如图所示,画斜线的部分为电磁铁两极,在其间隙安放一个环形真空室,电磁铁用频率为每秒数十周的强大交流电流来励磁,使两极间的磁感应强度B往返变化,从而在环形真空室内感应出很强的感应涡旋电场,用电子枪将电子注入唤醒真空室,他们在涡旋电场的作用下被加速,同时在磁场里受到洛伦兹力的作用,沿圆规道运动。
如何使电子维持在恒定半径为R的圆规道上加速,这对磁场沿径向分布有一定的要求,设电子轨道出的磁场为B,电子做圆周运动时所受的向心力为洛伦兹力,因此:2/=eBv mv R=mv BRe也就是说,只要电子动量随磁感应强度成正比例增加,就可以维持电子在一定的轨道上运动。
【典型例题】类型一、感生电动势的运算例1.有一面积为S =100 cm 2的金属环,电阻为R =0.1 Ω,环中磁场变化规律如图乙所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电荷量为多少?【答案】逆时针方向 0.01 C【解析】(1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为 2121B B B t tt ∆∆-=- ① 金属环中磁通量的变化率2121B B ФB S S t t t t ∆∆∆∆-==⋅- ② 环中形成的感应电流/E Фt ФI R R R t∆∆∆∆=== ③ 通过金属环的电荷量Q I t ∆= ④由①②③④解得221()(0.20.1)10C 0.01C 0.1B B S Q R ---⨯===.举一反三:【变式】在下图所示的四种磁场情况中能产生恒定的感生电场的是( )【答案】C例2.在空间出现如图所示的闭合电场,电场线为一簇闭合曲线,这可能是( )A .沿AB 方向磁场在迅速减弱B. 沿AB 方向磁场在迅速增强C. 沿AB 方向磁场在迅速减弱D. 沿AB 方向磁场在迅速增强【答案】AC【解析】根据电磁感应,闭合回路中的磁通量变化时,使闭合回路中产生感应电流,该电流可用楞次定律来判断,根据麦克斯韦电磁理论,闭合回路中产生感应电流,使因为闭合回路中受到了电场力的作用,而变化的磁场产生电场,与是否存在闭合回路没有关系,故空间磁场变化产生的电场方向,仍可用楞次定律来判断,四指环绕方向即感应电场的方向,由此可知AC 正确。
【总结升华】已知感应电场方向求原磁通量的变化情况的基本思路是:感应电场的方向 感应磁场的方向 磁通量的变化情况举一反三:【变式1】如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( )A .不变B .增加C .减少D .以上情况都可能【答案】B【高清课堂:电磁感应定律应用 例1】【变式2】下列各种实验现象,解释正确的是( )→右手螺旋定则 ←右手螺旋定则 →楞次定←楞次定【答案】ABC例 3.一个面积22410m S =⨯-、匝数100n =匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图4-5-6所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量变化率等于0.08 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势等于8 VD .在第3 s 末线圈中的感应电动势等于零【答案】AC【解析】磁通量的变化率ФB S t t∆∆∆∆=, 其中磁感应强度的变化率B t ∆∆即为B t -图象的斜率.由图知前2 s 的 2 T/s B t∆∆=,所以 22410Wb/s 0.08 Wb/s Фt∆∆⨯⨯-==, A 选项正确.在开始的2 s 内磁感应强度B 由2 T 减到0,又从0向相反方向的B 增加到2 T ,所以这2 s 内的磁通量的变化量212222410Wb 0.16Wb ФB S B S BS ∆-=+==⨯⨯⨯=,B 选项错.在开始的2 s 内1000.08V 8V ФE nt∆∆==⨯=, C 选项正确.第3 s 末的感应电动势等于2 s 4 s ~内的电动势,21002410V 8V ФB E n n S t t∆∆∆∆-===⨯⨯⨯=. D 选项错.【总结升华】正确计算磁通量的变化量Ф∆,是解题的关键。
举一反三:【变式1】闭合电路中产生的感应电动势大小,跟穿过这一闭合电路的下列哪个物理量成正比( )A .磁通量B .磁感应强度C .磁通量的变化率D .磁通量的变化量【答案】C【高清课堂:电磁感应定律应用 例2】【变式2】水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁,当条形磁铁沿轴线竖直向下迅速靠近铝环时,下列判断正确的是( )A .铝环有收缩的趋势,对桌面的压力增大B .铝环有扩张的趋势,对桌面的压力增大C .铝环有收缩的趋势,对桌面的压力减小D .铝环有扩张的趋势,对桌面的压力减小【答案】A【高清课堂:电磁感应定律应用 例3】【变式3】带正电的小球在水平桌面上的圆轨道内运动,从上方俯视,沿逆时针方向如图。
空间内存在竖直向下的匀强磁场,不计一切摩擦,当磁场均匀增强时,小球的动能将( )A .逐渐增大B .逐渐减小C .不变D .无法判定【答案】A类型二、动生电动势的运算例4.如图所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,以速度v 匀速从O 点开始右移,设导轨与金属棒均为粗细相同的同种金属制成,则下列判断正确的是( )A .电路中的感应电流大小不变B .电路中的感应电动势大小不变C .电路中的感应电动势逐渐增大D .电路中的感应电流逐渐减小【答案】AC【解析】导体棒从O 开始到如图所示位置所经历时间设为t ,EOF θ∠=,则导体棒切割磁感线的有效长度tan L OB θ⊥=,故2tan tan E BL v Bv vt Bv t θθ⊥⊥⋅⋅⋅===,即电路中电动势与时间成正比,C 选项正确;电路中电流强度2tan /E Bv t I R L Sθρ⋅==. 而L 等于OAB △的周长,1·tan +=(1+tan )cos cos vt L OB AB OA vt vt vt θθθθ=++=++, 所以 tan 11tan cos Bv SI θρθθ⋅==⎛⎫++ ⎪⎝⎭恒量.所以A 正确.【总结升华】导体棒切割磁感线的有效长度在变化,同时导轨与金属棒的长度也在变化。