高考专题:解析几何常规题型及方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。
两式相减得 ()()()()x x x x y y y y 12121212120+--+-=。
又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x yy y x x ---=·。
又k y y x x y x =--=--121212,代入得24022x y x y --+=。
当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。
因此所求轨迹方程是24022x y x y --+=说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
分析:(1)设||PF r 11=,|PF r 22=,由正弦定理得r r c122sin sin sin()αβαβ==+。
得r r c122++=+sin sin sin()αβαβ,βαβαsin sin )sin(++==a c e (2)()()a ex a ex a ae x ++-=+3332226。
当x =0时,最小值是23a ;当a x ±=时,最大值是26323a e a +。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(1)证明:抛物线的准线为114:x p=--由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t pt p >--++>14440,而 由消去得x y ty p x y +==+⎧⎨⎩21()x t p x t p 2220-++-=()() ∆=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。
(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, OA OB k k OA OB ⊥∴⨯=-,1 则x x y y 12120+= 又y y t x t x 1212=--()() ∴+=-+=x x y y t t p 1212220()∴==+p f t t t ()22又,得函数的定义域是p t p f t >++>0440() ()()-⋃+∞200,,(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p (1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。
或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标分别为A(x 1,y 1),B(x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+221212)(204)(4ax x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a,,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴解得:.42p a p -≤<-(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:p a x x x +=+=2213, .2)()(221213p a x a x y y y =-+-=+=所以|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形,所以|QM|=|QN|=P 2,所以S△NAB =22222||22||||21p p p AB p QN AB =⋅≤⋅=⋅,即△NAB 面积的最大值为P 22。
(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
分析:曲线的形状已知,可以用待定系数法。
设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0)设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为: A /(12,11222+-+-k k k k ),B (1)1(8,116222+-+k k k k )。
因为A 、B 均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552. 所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x.2.曲线的形状未知-----求轨迹方程 典型例题已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。
分析:如图,设MN 切圆C 于点N ,则动点M 组成的集合是:P={M||MN|=λ|MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M 点坐标代入,可得:(λ2-1)(x 2+y 2)-4λ2x+(1+4λ2)=0.当λ=1时它表示一条直线;当λ≠1时,它表示圆。
这种方法叫做直接法。
(6) 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称。
分析:椭圆上两点(,)x y 11,(,)x y 22,代入方程,相减得31212()()x x x x +-+412()y y +()y y 120-=。
又x x x =+122,y y y =+122,k y y x x =--=-121214,代入得y x =3。
又由y xy x m ==+⎧⎨⎩34解得交点(,)--m m 3。
交点在椭圆内,则有()()-+-<m m 224331,得-<<2131321313m 。
(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理或用向量的坐标运算来处理。
典型例题 已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 与抛物线C 有两个不同的交点(如图)。
(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。
分析:(1)直线y k x =+()2代入抛物线方程得k x k x k 222244440+-+-=(), 由∆>0,得-<<≠110k k ()。
(2)由上面方程得x x k k122244=-, y y k x x 12212224=++=()(),焦点为O (,)00。
22arctan=θ由k k y y x x k k OA OB·==-=-12122211,得k =±22,或22arctan -=πθB:解题的技巧方面在教学中,学生普遍觉得解析几何问题的计算量较大。
事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。
下面举例说明:(1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
典型例题 设直线340x y m ++=与圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。
解: 圆x y x y 2220++-=过原点,并且OP OQ ⊥,∴PQ 是圆的直径,圆心的坐标为M ()-121, 又M ()-121,在直线340x y m ++=上, ∴⨯-+⨯+=∴=-31241052()m m ,即为所求。
评注:此题若不充分利用一系列几何条件:该圆过原点并且OP OQ ⊥,PQ 是圆的直径,圆心在直线340x y m ++=上,而是设P x y Q x y ()()1122,、,再由OP OQ ⊥和韦达定理求m ,将会增大运算量。