当前位置:文档之家› 卫星姿态控制

卫星姿态控制


6.1
喷气推力姿态稳定原理
喷气姿态稳定系统的运行基本上根据质量排出反作
用喷气产生控制力矩的原理进行。图6.1表示一个典型的 喷气三轴姿态稳定控制系统
由于一个喷嘴只能产生一个方
向的推力,因此系统的每个通道起
码要有两个喷嘴。为了避免反作用 喷气推力对航天器的轨道运动产生 影响,一般地在同一方向都装上两 个喷嘴,如图6.2所示,此时控制
m 0
d 1 d k
02
(6.15)
2A
当 时,发生滑行现象,如图6.11中所示点 “4”以后的轨迹线状态。
d 1 当 d k 时,发生穿越现象,相轨迹如图6.12所示。
4.极限环工作方式 在没有外力矩作用在航天器上的情下,M dy 0 , 将图6.11和图6.12所示的极限环放大至如图6.13所示。
I y u M dy
M 0 u M 0 该式说明只要姿态有偏差 0
,喷嘴立即产生恒定的推力力矩M,
(6.7a)
(6.7b)
如图6.5所示。
暂时令 M dy 0 ,把式(6.7)代入式(6.6b)得 (6.8) M def A Iy 式中 A M I y ,式(6.8)的解为 0 At (6.9a) (6.9b)
M c M cxi M cy j M cz k
(6.2)
若本体坐标系为主轴坐标系,则航天器在控制力矩 的作用下,它的姿态动力学方程式为
I xx I z I y yz M cx M dx I y y I x I z xz M cy M dy I zz I y I x yx M cz M dz
t 1 At 2 0 0 2
式中,0 ,0 为初始姿态角度和初始姿态角速度。 若消去式(6.9a)和(6.9b)中的时间变量t,就得到相 轨迹方程,即 1 2 2 (6.10) 0 0
2A

这个式子说明:相平 面上的相轨迹是由一簇其轴 线与横轴平行的抛物线组成。 当时,相轨迹为直线,图6.6
具有死区特性的相平面运动
对于给定的理想情况,自振荡周期可以按下述方法 求得。运动方程 0 对应于自振荡循环的直线段;而 A 对应于抛物线段。 在初始条件 1 , 1 情况下对上述方程进 行积分,对于整个abcd段,有
41 = 1 t off
3.含超前校正网络的死区迟滞继电控制律 同时考虑推力器力或力矩输出特性中的死区和迟滞 特性,即图6.4所示中,u0≠uc≠ 0。此时uc 对应推力器 的死区角度偏差 ,u0 对应 (1 + h)1 ,这里h为迟滞系 1 数。于是根据式(6.4),控制律可列写为
U (1 ks)(c )
从该理想化的极限环工作状态可知,在死区负极限 ( R )和正极限( R )之间存在一个常值角速度 R ,见 式(6.18)。尽量减小这个常值角速度有利于节省工质消耗 量。 若推力器的推力为F,相对航天器质心的力臂为l,比 冲(比推力)为 I sp ,推力器的最小脉宽为△t,则容易证 明航天器继电控制的理想平均工质消耗量为
(6.3)

式中, M d M dxi M dy j M dz k 为作用于航天器的其 他环境干扰力矩。
喷嘴机构的简单工作原理如图6.3所示。
喷气阀门在正比于姿态角及其的驱动信号u作用下, 若不计衔铁运动的时间,就只有全开或全关的两种状态, 所以喷射推力F不是零值就是某一常值。
喷嘴原理
力矩由成对喷嘴产生(力偶)。
点击观看虚拟现实演示
分析图6.2得知,对装有三轴喷嘴所产生的控制力矩为
M cx 2m y vel M cy 2mz vel M cz 2mx vel
(6.1)
设由这些喷嘴产生的控制力矩矢量为 M c ,它以本体 坐标系三轴控制力矩分量表示,则有
考虑三轴稳定航天器姿态角偏差很小的情况,此时3个通 道的姿态运动可以视作独立无耦合,且
z y x 于是航天器的欧拉动力学方程式(6.3)可简化为
I x M cx M dx
I y M cy M dy
(6.6a) (6.6b) (6.6c)
41 = At on 和 其中 ton 和 toff 分别是有推力与没有推力的时间。 显然,自振荡周期 t a为
ta ton toff
.
.
由于 t off = 41 / 1 和
.
t on = 41 / A,所以有
(6.13)
1 1 t a = 4( + ) 1 A
从相平面图6.9所示看到,极限环宽度由喷嘴推力器 不灵敏区(即死区)决定,而极限环高度由姿态角速度敏 感器(例如速率陀螺)不灵敏度决定。具有角速度和角度 反馈的继电型控制系统是稳定的,从相平面图得知,系 统是有阻尼的。阻尼大小由角速度反馈系数决定。
m
Fl t
2
4 I y gI sp l1
(6.20)
可见,选择小力矩、小脉宽、大比冲和大死区的推 力器能使工质消耗速度减至最小。
考虑到节省喷气系统中的燃料,采用单侧极限环工作 方式(见图6.14)是一种有效的手段。
这种单边极限环使姿态限制在以下范围内:
R R
M dy t I y R M dy 16 I y
对于一般的n维控制任务,由上述分析方法可以证明 以下结论:
最小冗余结构可用作图法确定。以图6.17所示的二 维控制任务为例,图6.18为各种推力器配置方案的推力 矢量图。图中的每一个矢量代表配置的一个推力器的推 力矢量或力矩矢量。
过矢量的交点作任一直线aa’,把二维控制平面分为两 半。如果每一个半平面内至少含i个推力或力矩矢量,则系 统有冗余度R=I-1。依此方法可以判定,图6.18所示中由左 至右4种推力器配置方案的冗余度分别为R=1,l,2,2。
2
(6.21)
(6.22)
推力器和敏感器的选择必须保证极限环参数均小于 航天器姿态控制精度要求,即 R c R c 式中,c 和 c 分别为航天器姿态控制的角度和角速度精 度要求。
6.3
航天器的喷气推力器系统
对于大型航天器来说,由于动力学模型维数较高, 因此需要完成更高维的控制任务。 为了兼顾这几方面的要求,往往将 航天器的姿态控制与轨道控制任务 相结合,把相当数量的推力器组成 一个多推力器系统。在设计这样一 个复杂的执行机构系统结构时,如何保证推力器的数目 与分布安装位置既要达到可靠性要求,又要消耗最少的 工质或燃料是一个重要问题。同时在这种情况下,如何 通过计算机完成系统操作任务,即最佳地分配推力器的 工作和工作时间长短,以满足姿态控制或轨道控制任务, 又是另一个重要问题。
I z M cz M dz
三通道具有相同的简便形式,为此下面仅以俯仰通道为例 进行讨论。
1.基于位置反馈的继电控制律 为了便于由浅入深的分析,首先将图6.4所示的推力 器推力或力矩输出特性简化为单纯的继电型特性,即 令 u u 0,则航天器俯仰通道动力学方程和基于位置 0 c (只有角度而无角速度)反馈的继电控制律可列写为
(6.4b)
推力器实际上是一种继电系统,推力器的控制力矩 变化分为三档:正开、关闭、负开,具体属于哪一档取 决于航天器的姿态和控制律。这也就决定了推力器控制 系统的非线性输出和断续工作形式。 继电系统的稳定状态是极限环自振荡。在这种系统 的设计中,重要的是选择自振荡频率和振幅,即极限环 参数,使它们最佳地满足精度和能量消耗的要求。 喷气控制最适合于抵消具有常值分量的扰动力矩, 即非周期性扰动力矩,例如气动扰动力矩。这种情况正 是低轨道航天器扰动力矩所具有的特点。
uc 是释放衔铁的信号,u0 与 uc 之差称为滞宽。
于是,按照形成推力F的原理,就可以获得由推力 器产生的控制力矩M。的大小,即
M u0 u M c 0 uc u uc M u0 u
(6.4a)
M sgn u sgn uu 0 Mc sgn uu 0 0
M sgn(U ) 0
(6.14a)
U (1 h)1或 sgn(UU ) 0 (6.14b) U 或 sgn(UU ) 0
1
系统框图见图6.10。图中k为微分系数,θ c为给定 的姿态角。
当θ c=0时,系统由初始条件逐渐向里收敛,最后停留在 一个稳定振荡上面,即为极限环(见图6.11)。显然该控 制系统也是稳定的,有阻尼存在,且阻尼的大小取决于 超前网络参数k的大小。过渡过程的最大角度超调发生在 点“2”处,从分析式(6.12)得知,发生在处,其大小可 以表示为
当 >1 , 1时 M 0 当 , 时 u , 1 1 (6.11) M 当 <-1 , 1时

在一般情况下,控制系统将抑制运动受到的初始扰 动,这种扰动出现于相平面中的点1( 0 , 0 ) ,如图 6.9所示,然后使航天器进入极限环模式(自振荡)。
表示了这些相轨迹族。
2.基于位置和速度反馈的死区继电控制律 进一步地,在反馈控制系统中引人角速度反馈,并考 虑推力器力或力矩输出特性中的死区特性,即在图6.4所示 中令 u0 uc 0 ,此时 u0 uc 对应的位置(角度)偏差为 1 , 如图6.7所示。相应的采用角度和角速度敏感器的继电型控 制系统结构框图见图6.8。这里姿态角度敏感器可以采用红 外地平仪,角速度敏感器可以是速率陀螺。控制规律如下:
6.3.1
推力器系统的结构
“阿波罗”登月舱的推力器系统,可完成三轴姿态 控制与三轴质心控制,同样,要求控制某些轴的姿态或 质心运动时,不要影响其他轴的姿态与质心的运动。
相关主题