第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何? 解: 流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:h P h P P P Z P Z γργγ+=+=+=+002211g 或同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。
2-4如图2-22所示,一圆柱体d =0.1m ,质量M =50kg .在外力F =520N 的作用下压进容器中,当h=0.5m 时达到平衡状态。
求测压管中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2h H g d F +=+ρπ(代入数据得H=12.62m2.5盛水容器形状如图2.23所示。
已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。
求各点的表压强。
解:表压强是指:实际压强与大气压强的差值。
)(01Pa P =)(4900)(g 2112Pa h h P P =-+=ρ )(1960)(g 1313Pa h h P P -=--=ρ )(196034Pa P P -==)(7644)(g 4545Pa h h P P =--=ρ2-6两个容器A 、B 充满水,高度差为a 0为测量它们之间的压强差,用顶部充满油的倒U 形管将两容器相连,如图2.24所示。
已知油的密度ρ油=900kg /m 3,h =0.1m ,a =0.1m 。
求两容器中的压强差。
解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:gh g 42油水ρρ-=-P h P b)a g 2++=(水ρP P A gb 4水ρ+=P P BPa ga P P P P P B A 1.107942=+-=-=∆水ρ2-8一水压机如图2.26所示。
已知大活塞直径D =11.785cm ,小活塞直径d=5cm ,杠杆臂长a =15cm ,b =7.5cm ,活塞高度差h =1m 。
当施力F1=98N 时,求大活塞所能克服的载荷F2。
解:由杠杆原理知小活塞上受的力为F 3:a F b F *=*3 由流体静力学公式知:2223)2/()2/(D F gh d F πρπ=+ ∴F 2=1195.82N2-10水池的侧壁上,装有一根直径d =0.6m 的圆管,圆管内口切成a =45°的倾角,并在这切口上装了一块可以绕上端铰链旋转的盖板,h=2m ,如图2.28所示。
如果不计盖板自重以及盖板与铰链间的摩擦力,问开起盖板的力T 为若干?(椭圆形面积的J C =πa 3b/4)解:建立如图所示坐标系oxy ,o 点在自由液面上,y 轴沿着盖板壁面斜向下,盖板面为椭圆面,在面上取微元面dA,纵坐标为y ,淹深为h=y * sin θ,微元面受力为A gy A gh F d sin d d θρρ==板受到的总压力为A h A y g A g F c c AAγθρθρ====⎰⎰sin yd sin d F盖板中心在液面下的高度为 h c =d/2+h 0=2.3m,y c =a+h 0/sin45° 盖板受的静止液体压力为F=γh c A=9810*2.3*πab 压力中心距铰链轴的距离为 :22232D F 2d F ⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛πρπgh 44.045sin 0445sin 1245sin h A J 30c =⎪⎭⎫ ⎝⎛︒++︒=︒-+=abh a ba d y y l c c ππX=d=0.6m,由理论力学平衡理论知,当闸门刚刚转动时,力F 和T 对铰链的力矩代数和为零,即:0=-=∑Tx l F M故T=6609.5N2-14有如图2.32所示的曲管AOB 。
OB 段长L1=0.3m ,∠AOB=45°,AO 垂直放置,B 端封闭,管中盛水,其液面到O 点的距离L2=0.23m ,此管绕AO 轴旋转。
问转速为多少时,B 点的压强与O 点的压强相同?OB 段中最低的压强是多少?位于何处?解:盛有液体的圆筒形容器绕其中心轴以等角速度ω旋转时,其管内相对静止液体压强分布为:z r P P γωρ-+=2220以A 点为原点,OA 为Z 轴建立坐标系 O 点处面压强为20gl P P a ρ+= B 处的面压强为gZ P P a B ρωρ-+=2r 22其中:Pa 为大气压。
21145cos ,45s L L Z in L r -︒=︒= 当PB=PO 时ω=9.6rad/s OB 中的任意一点的压强为⎥⎦⎤⎢⎣⎡--+=)(2r 222L r g P P a ωρ对上式求P 对r 的一阶导数并另其为0得到,2ωgr =即OB 中压强最低点距O 处m rL 15.045sin =︒='代入数据得最低压强为P min =103060Pa第三章习题(吉泽升版)3.1已知某流场速度分布为 ,试求过点(3,1,4)的流线。
解:由此流场速度分布可知该流场为稳定流,流线与迹线重合,此流场流线微分方程为:3,3,2-=-=-=z u y u x u z y x即:求解微分方程得过点(3,1,4)的流线方程为:3.2试判断下列平面流场是否连续?解:由不可压缩流体流动的空间连续性方程(3-19,20)知: ,当x=0,1,或y=k π (k=0,1,2,……)时连续。
3.4三段管路串联如图3.27所示,直径d 1=100 cm ,d 2=50cm ,d 3=25cm ,已知断面平均速度v 3=10m/s ,求v 1,v 2,和质量流量(流体为水)。
解:可压缩流体稳定流时沿程质量流保持不变, 故:质量流量为:⎪⎩⎪⎨⎧=-=-1)3(1)2(33y z y x y x u y x y x cos 3,sin u 33==()yx y y y xxx x y x sin 13sin sin 32323-=-=∂∂+∂∂νν332211Q A v A v A v vA ====s m A A v /625.0v 1331==m/s 5.22332==A Av v ()s A /Kg 490v Q M 33==∙=水ρρ3.5水从铅直圆管向下流出,如图3.28所示。
已知管直径d 1=10 cm ,管口处的水流速度v I =1.8m/s ,试求管口下方h =2m 处的水流速度v 2,和直径d 2。
解:以下出口为基准面,不计损失,建立上出口和下出口面伯努利方程: 代入数据得:v2=6.52m/s由 得:d2=5.3cm3.6水箱侧壁接出一直径D =0.15m 的管路,如图3.29所示。
已知h1=2.1m ,h2=3.0m,不计任何损失,求下列两种情况下A 的压强。
(1)管路末端安一喷嘴,出口直径d=0.075m ;(2)管路末端没有喷嘴。
解:以A 面为基准面建立水平面和A 面的伯努利方程: 以B 面为基准,建立A,B 面伯努利方程:(1)当下端接喷嘴时,解得va=2.54m/s, PA=119.4KPa(2)当下端不接喷嘴时,解得PA=71.13KPa 3.7如图3.30所示,用毕托管测量气体管道轴线上的流速Umax ,毕托管与倾斜(酒精)微压计相连。
已知d=200mm ,sin α=0.2,L=75mm ,酒精密度ρ1=800kggv P g vP h a a2022221++=++γγ2211v A v A =gv P P h aA a 2002D 21++=+++γγγγab A a P g v Pg v h ++=+++2022D 222b b a a A v A v =b a v v =/m 3,气体密度ρ2=1.66Kg/m 3;Umax=1.2v(v为平均速度),求气体质量流量。
解:此装置由毕托管和测压管组合而成,沿轴线取两点,A(总压测点),测静压点为B ,过AB 两点的断面建立伯努利方程有:其中ZA=ZB, vA=0,此时A 点测得 的是总压记为PA*,静压为PB 不计水头损失,化简得 由测压管知:由于气体密度相对于酒精很小,可忽略不计。
由此可得气体质量流量:代入数据得M=1.14Kg/s3.9如图3.32所示,一变直径的管段AB ,直径dA=0.2m ,dB=0.4m ,高差h=1.0m ,用压强表测得PA =7x104Pa ,PB =4x104Pa ,用流量计测得管中流量Q=12m 3/min ,试判断水在管段中流动的方向,并求损失水头。
解:由于水在管道内流动具有粘性,沿着流向总水头必然降低,故比较A和B点总水头可知管内水的流动方向。
gg v 2vP Z 2P Z 2AA A 2max BB ++=++气气γγ2max B *A 21P -P v 气ρ=()agL cos P -P B *A 气酒精ρρ-=21max cos 2ρρagL v =A v A 2.1v M max22ρρ==s m v s m v s A v v b a b b a a /592.1,/366.6)/m (6012Q A 3==⇒===mv2.9P 0H 2a AA =++=即:管内水由A 向B 流动。
以过A 的过水断面为基准,建立A 到B 的伯努利方程有:代入数据得,水头损失为hw=4m第九章 导 热1. 对正在凝固的铸件来说,其凝固成固体部分的两侧分别为砂型(无气隙)及固液分界面,试列出两侧的边界条件。
解:有砂型的一侧热流密度为 常数,故为第二类边界条件, 即τ>0时),,,(nt z y x q T=∂∂λ固液界面处的边界温度为常数, 故为第一类边界条件,即 τ>0时Τw =f(τ)注:实际铸件凝固时有气隙形成,边界条件复杂,常采用第三类边界条件3. 用一平底锅烧开水,锅底已有厚度为3mm 的水垢,其热导率λ为1W/(m · ℃)。
已知与水相接触的水垢层表面温度为111 ℃。
通过锅底的热流密度q 为42400W/m 2,试求金属锅底的最高温度。
解:热量从金属锅底通过水垢向水传导的过程可看成单层壁导热,由公式(9-11)知C q T 032.127110342400=⨯⨯==∆-λδ=∆T -=-121t t t 111℃, 得 1t =238.2℃4. 有一厚度为20mm 的平面墙,其热导率λ为1.3W/(m·℃)。