当前位置:文档之家› 晶体的倒格子和布里渊区

晶体的倒格子和布里渊区


倒易点阵仍是简立方点阵:
2 2 2 b1 i, b2 j , b3 k, a a a
所以倒格子也是布拉菲格子。 六角点阵: 六角点阵的倒易点阵: 见Ashcroft p88 c 轴方向不变,a 轴在垂直于c 轴的 平面上旋转30度。
正格子空间六方结构,在倒格子空间亦为六方结 构。不过其基矢尺寸关系发生变化,基矢方向也转了 一个角度。
五. 布里渊区: 第一布里渊区的确定:取法和正点阵中Wigner-Seitz 原胞取法相同。它是倒易点阵的原胞。
Léon Brilliouin
(1889-1969)
布里渊区定义:在倒易点阵中,以某一格点为坐标原点,做所有 倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原 点的多面体区域,这些区域称作布里渊区,其中最靠近原点 的平面所围成的区域称作第一布里渊区,第一布里渊区界面
Face-centered cubic
K L
Middle of an edge joining two hexagonal faces Center of a hexagonal face
U
W X
Middle of an edge joining a hexagonal and a square face
与正格子的晶面系 (h1h2h3 ) 正交。 如图所示,晶面系 (h1h2h3 ) 中最靠近原点的晶面(ABC) 在正格子基矢 a1 , a 2 , a 3 的截距分别为: a1 , a 2 , a 3 h1 h2 h3
a1 a 3 CA OA OC h1 h3 a 2 a 3 CB OB OC h2 h3
二. 倒易点阵和晶体点阵之间的关系:
倒易点阵是从晶体点阵(以后简称正点阵)中定义出的, 可以方便地证明它和正点阵之间有如下关系: bi a j 2 ij 1. 两个点阵的基矢之间: 1, i j ij 0, i j
2. 两个点阵的格矢之积是 2 的整数倍: Gh Rn 2 m
位移矢量 Gh h1 b1 h2 b2 h2 b3 就构成了上面点阵的
倒易点阵,上面变换公式中出现的 2 因子,对于晶体学 家来说并没有多大用处,但对于固体物理研究却带来了极 大的方便。倒易点阵的概念是Ewald 1921年在处理晶体X 射线衍射问题时首先引入的,对我们理解衍射问题极有帮 助,更是整个固体物理的核心概念。
Corner point Center of a square face Body-centered cubic
H N P
Corner point joining four edges Center of a face Corner point joining three edges Hexagonal
倒易点阵是在晶体点阵(布拉菲格子)的基础上定 义的,所以每一种晶体结构,都有 2个点阵与其相联系, 一个是晶体点阵,反映了构成原子在三维空间做周期排 列的图像;另一个是倒易点阵,反映了周期结构物理性 质的基本特征。
四. 倒易点阵实例:
倒格子基矢是从点阵基矢引出的,它们之间的联系需要我 们通过具体实例来理解:根据右面定义, a a
Rn Ghkl (n1a1 n2 a2 n3a3 ) (hb1 kb2 lb3 ) 2 (n1h n2 k n3l ) 2m
(m为整数)
3. 证明:先证明倒格矢
Gh1 ,h2 ,h3 h1b1 h2b2 h3b3
晶面系的面间距就是原点到ABC面的距离,由于 Gh1h2h3 ( ABC)
可以证明:
d h1h2 h3
Gh1h2h3 2 OA Gh1h2h3 Gh1h2h3
由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中 的一族晶面相对应的,它的方向是该族晶面的法线方向,而 它的大小是该族晶面面间距倒数的2π倍。又因为倒易点阵基 矢对应一个阵点,因而可以说:晶体点阵中的晶面取向和晶 面面间距这 2 个参量在倒易点阵里只用一个点阵矢量(或说 阵点)就能综合地表达出来。
现在定义 3个新的基矢 b1, b2 , b3 构成一个新点阵:
( h1, h3, h3 是整数。)
a 2 a3 b1 2 a1 a 2 a3 a3 a1 b2 2 a1 a 2 a3 a1 a 2 b3 2 a1 a 2 a3
三维例子:
正点阵为简 单点阵,倒 易点阵也是 简单点阵。
正格子空间中长 的基矢a3对应于 倒格子空间短的 基矢b3,反之亦 然。推广,正格 子空间长的线条 对应于倒格子空 间短的线条。
正点阵为有心点阵时,倒易点阵也是有心点阵, 但有心类型可能不同,例如:体心立方点阵的倒格子 为面心立方点阵。
而面心立方点阵的倒格子为体心立方点阵。
各布里渊区的形状,不管被分成多少部分,对原点都是对称的
六方点阵布里渊区图
见黄昆书图4-24 (p194)
Kittel
(p28)
黄昆书图4-12(p179)
见黄昆书图4-12 (p179)
体心立方的Wigner-Seitz原胞及第一布里渊区
面心立方的Wigner-Seitz原胞及第一布里渊区
(2)晶面族(h1h2h3)的面间距d为
证明:由前面的证明
可知,原点到面ABC 的距离即为所求面间 距(设为d)。
d OA cos 又 OA Gh OA Gh cos d OA G Gh
2 d Gh
a3
Gh
a2
a3/h3
C B
a2/h2
d O

显然 :b a and a , b a and a , 1 2 3 2 3 1 b3 a1 and a2
Байду номын сангаас
b1 2 2 3 a1 a 2 a3 a3 a1 b2 2 a1 a 2 a3 a1 a 2 b3 2 a1 a 2 a3
所以:
2 (2 ) 2 c1 * a1 a1
同样可以证明:
c 2 a 2 , c3 a 3 ,
三. 倒易点阵(Reciprocal lattice)的物理意义:
实际上,晶体结构本身就是一个具有晶格周期性的 物理量,所以也可以说:倒易点阵是晶体点阵的 Fourier变换,晶体点阵则是倒易点阵的Fourier逆变换。 因此,正格子的量纲是长度 L, 称作坐标空间,倒格子 的量钢是长度的倒数 L-1,称作波矢空间。例如:正点 阵取cm,倒易点阵是cm-1, 下一节我们将看到: 晶体的显微图像是真实晶体结构在坐标空间的映像。 晶体的衍射图像则是晶体倒易点阵的映像。
h n
既然 就是倒易点阵 的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中 的表述之间服从Fourier变换关系。
R n 是正点阵的格矢,符合该关系的 G h
一. 定义:假设 a1, a 2 , a 3 是一个晶体点阵的基矢,该点阵的
格矢为:Rn n1 a1 n1 a2 n1 a3 原胞体积是: a1 (a2 a3 )
A
Center of a hexagonal face
H
K L M
Corner point
Middle of an edge joining two rectangular faces Middle of an edge joining a hexagonal and a rectangular face Center of a rectangular face
b2
a2 a1
b1
左图是一个二维斜方点阵和它的
倒易点阵, b1 a 2 , b2 a1 , a1 b1 a2 b2 2 a1 b2 a2 b1 0
简立方点阵: a1 ai, a2 a j, a3 ak
a1/h1
A
a1
a1 1 2 ( h1 b1 h2 b2 h3 b3 ) h1 Gh Gh
上述第3点的图示。
4. 正点阵和倒易点阵是互易的:由正点阵 a1 , a 2 , a 3 给出倒易 点阵 b1, b2 , b3 现假定 b1, b2 , b3 为正点阵,则其 倒易点阵根据定义为: c 2 (b b ) 2 3 1 *
利用三重矢积公式: A ( B C) B( A C) C( A B)
可以得到:
2 2 (2 )2 b 2 b3 ( a 3 a1 ) ( a1 a 2 ) a1
*
2 3 又因为: b1 (b2 b3 ) (2 ) (a1 b1 ) (2 )
与次远垂直平分面所围成的区域称作第二布里渊区,依次类
推得到二维正方格子的布里渊区图见下页。
用 k 表示从原点出发、端点落在布里渊区界面上的倒易空
间矢量,它必然满足方程:
由于布里渊区界面是某倒格矢 G 的垂直平分面,如果
1 2 k G G 2
该方程称作布里渊区的界面方程
• 二维正方格子的布区
于是:
Gh1h2 h3 CA a1 a3 (h1b1 h2b2 h3b3 ) ( ) h1 h3 2 2 0
同理 Gh1h2 h3 CB 0 而且 CA, CB 都在(ABC)面上, 所以 Gh1h2h3 与晶面系 (h1h2h3 ) 正交。
当一个点阵具有位移矢量 Rn n1 a1 n1 a2 n1 a3 时,考虑到周期性特点,一个物理量在 r 点的数值 ( r ) 也应该具有周期性: 两边做Fourier展开,有:(r) (r Rn ) n! '(Gh ) exp(iGh r ) '(Gh ) exp(iGh r ) exp(iGh Rn ) r ! n r ! K K 显然: exp(iGh Rn ) 1 即: G R 2 m
相关主题