当前位置:文档之家› 大学物理学吴柳下答案

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径.解:λυρη31=M RT πυ8= nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RV p T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=-J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη 解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q L LCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=)习题14.3图2Ao当6x cm =-时1cos 2ϕ=-∵30sin ϕ<∴=v12212sin 6365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。

相关主题