当前位置:文档之家› 高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的方法十三种TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、十三、一一映射法 十四、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y =的值域。

11≥,∴函数1y =的值域为[1,)+∞。

【例2】求函数x 1y =的值域。

【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-=ff,()11-f所以:=20=f,()()0∈3x,而()()3-f=1={}3,0,1-∈y注意:求函数的值域时,不能忽视定义域,如果该题的定义域为Rx∈,则函数的值域为{}1y。

y≥|-二.配方法:配方法式求“二次函数类”值域的基本方法。

形如2=++的F x af x bf x c()()()函数的值域问题,均可使用配方法。

【例1】求函数225,[1,2]y x x x=-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8]【变式】已知,求函数的最值。

【解析】由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t (2)当∈t [-3,-2]时,求g(t)的最值。

(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

图1图2图3①如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。

②如图2所示,若顶点横坐标在区间上时,有,即。

当时,函数取得最小值。

③如图3所示,若顶点横坐标在区间右侧时,有,即。

当时,函数取得最小值综上讨论,g(t)=⎪⎩⎪⎨⎧<+≤≤>+-=0110,11,1)1()(22mint t t t t x f (2)221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩(,0]t ∈-∞时,2()1g t t =+为减函数∴ 在[3,2]--上,2()1g t t =+也为减函数∴min ()(2)5g t g =-=, max ()(3)10g t g =-=【例3】 已知2()22f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.【解析】由已知可求对称轴为1x =.(1)当1t >时,2min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,.(2)当11t t +≤≤,即01t ≤≤时,.根据对称性,若2121≤++t t 即102t ≤≤时,2max ()()23f x f t t t ==-+.若2121>++t t 即112t <≤时,2max ()(1)2f x f t t =+=+.(3)当11t +<即0t <时,2max ()()23f x f t t t ==-+.综上,⎪⎪⎩⎪⎪⎨⎧≤+->+=21,3221,2)(22maxt t t t t x f【例4】 (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。

【解析】(1)二次函数的对称轴方程为x a =-, 当1a 2-<即1a 2>-时,max f (x )f (2)4a 5==+;当1a 2-≥即1a 2≤-时,max f (x )f (1)2a 2=-=+。

综上所述:max12a 2,a 2f (x )14a 5,a 2⎧-+≤-⎪⎪=⎨⎪+>-⎪⎩。

(2)函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;由图可知max ()(1)f x f =-(2)a ≤-22≤;由图可知max ()()2af x f = (3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a af a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a aa a y 最大 【例5】 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22⎡⎤-⎢⎥⎣⎦上的最大值为3,求实数a 的值。

【分析】这是一个逆向最值问题,若从求最值入手,需分a 0>与a 0<两大类五种情形讨论,过程繁琐不堪。

若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。

具体解法为: (1)令2a 1f ()32a --=,得1a 2=- 此时抛物线开口向下,对称轴方程为x 2=-,且32,22⎡⎤-∉-⎢⎥⎣⎦,故12-不合题意;(2)令f (2)3=,得1a 2=此时抛物线开口向上,闭区间的右端点距离对称轴较远,故1a 2=符合题意;(3)若3f ()32-=,得2a 3=-此时抛物线开口向下,闭区间的右端点距离对称轴较远,故2a 3=-符合题意。

综上,1a 2=或2a 3=-【变式】 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。

【解析】2()(1)1,[3,2]f x a x a x =++-∈- (1)若0,()1,a f x ==,不符合题意。

(2)若0,a >则max ()(2)81f x f a ==+由814a +=,得38a =(3)若0a <时,则max ()(1)1f x f a =-=-由14a -=,得3a =-综上知38a =或3a =-【例6】 已知函数2()2x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。

【解法1】讨论对称轴中1与,,2m nm n +的位置关系。

①若,则max min()()3()()3f x f n nf x f m m ==⎧⎨==⎩解得②若12m nn +≤<,则max min()(1)3()()3f x f n f x f m m ==⎧⎨==⎩,无解 ③若12m nm +≤<,则max min()(1)3()()3f x f n f x f n m ==⎧⎨==⎩,无解④若,则max min()()3()()3f x f m nf x f n m ==⎧⎨==⎩,无解综上,4,0m n =-=【解法2】由211()(1)22f x x =--+,知113,,26n n ≤≤,则[,](,1]m n ⊆-∞,又∵在[,]m n 上当x 增大时)(x f 也增大所以max min()()3()()3f x f n nf x f m m ==⎧⎨==⎩ 解得4,0m n =-=评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

【例7】 求函数35y x x =--的值域.【解法1】22)4(122)5)(3(253--+=--+-+-=x x x x x y显然]4,2[)4(12222∈--+=x y 故函数的值域是:]2,2[∈y【解法2】显然3≤x ≤5,2232sin ([0,])52cos 2x x πθθθ-=∈⇒-=,cos )2sin()4y πθθθ==+=+∈三、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法(分母少,分子多),通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式此类问题一般也可以利用反函数法。

【例1】 求函数12++=x x y 的值域 【解析】利用恒等变形,得到:111++=x y ,容易观察知x ≠-1,y ≠1,得函数的值域为y ∈(-∞,1)∪(1, +∞)。

注意到分数的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域。

【例2】 求函数122+--=x x xx y 的值域。

【解析】观察分子、分母中均含有x x -2项,可利用部分分式法;则有43)21(11111122222+--=+--+-=+--=x x x x x x x x x y 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f从而)∞+⎢⎣⎡∈,43)(x f 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。

所以 ⎝⎛⎥⎦⎤∈43,0)(x g 故)1,31⎢⎣⎡-∈y【变式】求下列函数的值域:(1) 231--=x x y (2) 1122+-=x x y .答案:(1)值域),(),(3131+∞⋃-∞∈y (2)值域y ∈[-1,1]四、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

【例1】求函数1212x xy -=+的值域。

【解析】由1212x xy -=+解得121x y y -=+, ∵20x>,∴101y y ->+, ∴11y -<< ∴函数1212xxy -=+的值域为(1,1)y ∈-。

【例2】求函数3456x y x +=+值域。

【解析】由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:33(,)(,)55-∞∞【例3】 求函数11+-=x x e e y 的值域。

解答:先证明11+-=x x e e y 有反函数,为此,设21x x <且R x x ∈21,,0)1)(1(211112121221121<++-=+--+-=-x x x x x x x x e e e e e e e e y y 。

相关主题