1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI j dtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A3.B 4.C5.14-⋅==s m tdt dsv ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥ 3.牛顿定律单元练习答案1.C 2.C 3.A4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+分离变量积分()⎰⎰+=to vdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+to vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程1. av m f mg 2cos =-θ,tvm m g d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+-解得 )(22121x x m g kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律 mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
6.2ln kJ7.解:(1)由转动定律,2/2.39s rad JFr==α (2)由刚体转动的动能定理J Fh E E k k 490==∆= (3)根据牛顿运动定律和转动定律:mg –F ’=marF ’=J αa=r α 联立解得飞轮的角加速度22/8.21s rad mrJ mg =+=α 8.解:(1)由转动定律 α=2312ml l mg l g 23=α (2)取棒与地球为系统,机械能守恒mgl E k 21= (3)棒下落到竖直位置时 22312121ω⋅⋅=ml mgl l g 3=ω 9.解:(1)系统的能量守恒,有222121ω+=J mv mgh ω=r v联立解得: J mr mghr v +=222 ; Jmr mgh +=ω22 (2)设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg – T =maT r =J β由运动学关系有: a = r β联立解得: 2mrJ mgJ T +=10.解:以中心O 为原点作坐标轴Ox 、Oy 和O z 如图所示,取质量为y x m d d d ρ=式中面密度ρ为常数,按转动惯量定义,)(12)()(3322222222b a ab y y x x m y x a a bb +ρ=+ρ=+=⎰⎰⎰--d d d z J 薄板的质量 ab m ρ=所以 )(1222b a m J +=z 7.刚体转动单元练习(二)答案1.C2.A3.D4.B5.o ω3;o J 31 6.o ω34;221o o J ω 7.解:小球转动过程中角动量守恒ω=ω422o o or m mr o ω=ω4 2222232121o o o mr J J W ω=ω-ω= 8.子弹与木杆在水平方向的角动量守恒ω⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=2221221212l m l m l v m ()l m m v m 21236+=ω 9.解:圆环所受的摩擦力矩为mgR M μ=,由转动定律 α=μ2mR mgR , R g μ=α 至圆环停止所经历的时间 gR t μω=αω=00 10.解:落下过程棒的机械能守恒。
设棒刚到竖直位置时角速度为ω2312122L Mg ML =ω⋅, ① 碰撞过程,物体与棒系统角动量守恒ω=231ML mvx , ② 碰撞过程轴不受侧向力,物体与棒系统水平方向动量守恒 ω=M L mv 2, ③ ①、③消去ω,得 gL m M v 32=, ④ ②、④消去v ,得 L x 32=. 8.机械振动单元练习(一)答案1. B2. B3. C4. A5. 0.10cos(π/6π/3)m x t =+6. 2:17. 解:0.1m A =,2π/πT ω==运动方程cos()0.1cos(π)m x A t t ωϕϕ=+=+(1)由旋转矢量法π/2ϕ=-,0.1cos(ππ/2)m x t =-;(2)由旋转矢量法π/3ϕ=,0.1cos(ππ/3)m x t =+;(3)由旋转矢量法πϕ=,0.1cos(ππ)m x t =+。