高等代数【北大版】6.2
◇利用负元素,我们定义减法: ( )
§6.2 线性空间的定义与简单性质
3、0 0, k 0 0, ( 1) , k ( ) k k 证明:∵ 0 (0 1) ,
∴两边加上 即得 0 =0; ∵
§6.2 线性空间的定义与简单性质
例6
nn V f ( A ) f ( x ) R [ x ], A R 令
即n 阶方阵A的实系数多项式的全体,则V关于矩阵 的加法和数量乘法构成实数域R上的线性空间. 证:根据矩阵的加法和数量乘法运算可知
f ( A) g( A) h( A), kf ( A) d ( A) 其中,k R, h( x ), d ( A) R[ x ]
例3
数域 P上 m n矩阵的全体作成的集合,按矩阵
的加法和数量乘法,构成数域 P上的一个线性空间, 用 P mn 表示.
§6.2 线性空间的定义与简单性质
例4
任一数域 P 按照本身的加法与乘法构成一个
数域P上的线性空间. 例5 全体正实数R+,
1) 加法与数量乘法定义为: a, b R , k R
① a b ab ba b a ② (a b) c (ab) c (ab)c a(bc) a (bc) a ( b c)
§6.2 线性空间的定义与简单性质
a 1 a1 a, a ③ 1 R+, R+,即1是零元;
又V中含有A的零多项式,即零矩阵0,为V的零元素. 以 f(x) 的各项系数的相反数为系数作成的多项式记为 -f(x) , 则 f(A)有负元素-f(A). 由于矩阵的加法与数 乘满足其他各条,故V为实数域R上的线性空间.
§6.2 线性空间的定义与简单性质
二、线性空间的简单性质
1、零元素是唯一的.
引例 1
在第三章§2中,我们讨论了数域P上的n维向量
空间Pn,定义了两个向量的加法和数量乘法:
(a1 , a2 ,, an ) (b1 , b2 ,, bn ) (a1 b1 , a2 b2 ,, an bn )
k(a1 , a2 ,, an ) (ka1 , ka2 ,, kan ), k P
a b log
b a
k a a
k
a , b R , k R 2) 加法与数量乘法定义为:
a b ab
k a a
k
判断 R+是否构成实数域 R上的线性空间 .
§6.2 线性空间的定义与简单性质
解:1)R+不构成实数域R上的线性空间.
⊕不封闭,如
1 2 log 1 R+. 2
④ a
1 + R ,
⑤ 1 a a1 a ; a R+; ⑥ k ( l a ) k a (a ) a
l l k lk
1 即 a 的负元素是 a ;
1 1 R+,且 a a 1 a a a
a (kl ) a ;
kl
k k k k
在V中都存在唯一的一个元素δ与它们对应,称δ为
k与 的数量乘积,记为 k .
§6.2 线性空间的定义与简单性质
如果加法和数量乘
法还满足下述规则,则称V为数域P上的线性空间:
加法满足下列四条规则: ①
, , V
② ( ) ( ) ③ 在V中有一个元素0,对 V , 有 0
(具有这个性质的元素0称为V的零元素)
④ 对 V , 都有V中的一个元素β ,使得 0 ;(β 称为 的负元素) 数量乘法满足下列两条规则 : ⑤ 1
⑥
k ( l ) ( kl )
数量乘法与加法满足下列两条规则: ⑦ ( k l ) k l ⑧ k ( ) k k
§6.2 线性空间的定义与简单性质
第六章 线性空间
§1 集合· 映射 §2 线性空间的定义 与简单性质 §3 维数· 线性子空间
§6 子空间的交与和 §7 子空间的直和 §8 线性空间的同构 小结与习题
§6.2 线性空间的定义 与简单性质
一、线性空间的定义
二、线性空间的简单性质
§6.2 线性空间的定义与简单性质
§6.2 线性空间的定义与简单性质
4、如果 k =0,那么k=0或 =0.
证明:假若 k 0, 则
(k 1k ) k 1 (k ) k 1 0 0.
练习:
1、P273:习题3 1) 2) 4)
2、证明:数域P上的线性空间V若含有一个非零 向量,则V一定含有无穷多个向量.
§6.2 线性空间的定义与简单性质
例1 例2
引例1, 2中的 Pn, P[x] 均为数域 P上的线性空间. 数域 P上的次数小于 n 的多项式的全体,再添
上零多项式作成的集合,按多项式的加法和数量乘
法构成数域 P上的一个线性空间,常用 P[x]n表示.
P[ x ]n { f ( x ) an1 x n1 a1 x a0 an1 , , a1 , a0 P }
§6.2 线性空间的定义与简单性质
一、线性空间的定义
设V是一个非空集合,P是一个数域,在集合V中 定义了一种代数运算,叫做加法:即对 , V , 在V中都存在唯一的一个元素 与它们对应,称 为
与 的和,记为 ;在P与V的元素之间还
定义了一种运算,叫做数量乘法:即 V , k P ,
§6.2 线性空间的定义与简单性质
注:
1. 凡满足以上八条规则的加法及数量乘法也
称为线性运算.
2.线性空间的元素也称为向量,线性空间也称 向量空间.但这里的向量不一定是有序数组. 3 .线性空间的判定: 若集合对于定义的加法和数乘运算不封闭,或者 运算封闭但不满足八条规则中的任一条,则此集合 就不能构成线性空间.
证明:假设线性空间V有两个零元素01、02,则有 01=01+02=02.
2、 V ,的负元素是唯一的,记为- .
证明:假设 有两个负元素 β 、γ ,则有
0,
0
0 ( ) ( ) ( ) 0
1 2 2
2) R+构成实数域R上的线性空间. 首先,R+≠ ,且加法和数量乘法对R+是封闭的.
事实上, a, b R , a b ab R ,且 ab 唯一确定;
a R , k R, k a a R,且 ak 唯一确定.
k
其次,加法和数量乘法满足下列算律
§6.2 线性空间的定义与简单性质
证:设 V , 且 0
k1 , k2 P , k1 k2 , 有 k1 , k2 V
又 k1-k2 (k1 k2 ) 0
k1 k2 .
而数域P中有无限多个不同的数,所以V中有无限
多个不同的向量.
注 只含一个向量—零向量的线性空间称为零空间.
⑦ (k l ) a a
k l
a k a l a k a l ( k a ) (l a )
k
⑧ k (a b) k (ab) (ab) a b a b
( k a ) ( k b) ;
∴ R+构成实数域 R上的线性空间.
k k ( 0) k k 0
(1 ) 1 (1 ) (1 1) 0 0
∴两边加上 k ;即得k 0=0 ; ∵
∴两边加上- 即得 ( 1) ; ∵k (
) k k ( ) k ∴两边加上 k 即得 k ( ) k k .
而且这两种运算满足一些重要的规律,如
( ) ( )
1 k ( l ) ( kl )
0
( k l ) k l ( ) 0 k ( ) k k , , P n , k , l P
§6.2 线性空间的定义与简单性质
引例 2
数域P上的一元多顶式环P[x]中,定义了两个多 项式的加法和数与多项式的乘法,而且这两种运算 同样满足上述这些重要的规律,即 f ( x ) g( x ) g( x ) f ( x ) ( f ( x ) g( x )) h( x ) f ( x ) ( g( x ) h( x )) f ( x) 0 f ( x) f ( x ) ( f ( x )) 0 f ( x ), g( x ), h( x ) P[ x ], k , l P 1 f ( x) f ( x) k (l ) f ( x ) ( kl ) f ( x ) (k l ) f ( x ) kf ( x ) lf ( x ) k ( f ( x ) g( x )) kf ( x ) kg( x )