当前位置:文档之家› 机械原理考研知识点总结

机械原理考研知识点总结


第七章 机械的运转及其速度波动的调节
1.等效动力学模型概念
对于一个单自由度机械系统的动力学问题研究,可简化为对 其一个等效转动构件或等效移动构件的运动的研究。
等效转动惯量(或等效质量)是等效构件具有的假想转动惯 量(或假想质量),等效构件的动能应等于原机械系统中所有运 动构件的动能之和。
等效力矩(或等效力)是作用在等效构件上的一个假想力矩 (或假想力),其瞬时功率应等于作用在原机械系统上的所有外 力在同一瞬时的功率之和。
4.转动副自锁条件
结论 转动副发生自锁的条件为:作用在轴颈上的驱动力为
单力G, 且作用于摩擦圆之内,即a≤ ρ。
G ρ
O
FR21
a
第6章 机械的平衡
1.所谓刚性转子的不平衡,是指由于结构不对称、材 料缺陷以及制造误差等原因而使质量分布不均匀,致 使中心惯性主轴与回转轴线不重合,而产生离心惯性 力系的不平衡。根据平衡条件的不同,又可分为静平 衡和动平衡两种情况。
y
C VVCC ω VCB
B VB2 x
o y C aC ε aCB B aB2
x o
vC = vB+vCB
VB
p
b
VCB
c
VC
aC = aB + aCB = aB + aCnB + aCt B
p′
b
aB
aCnB
aCB aCt B
aC
c
第四章 平面机构的力分析
1. 作用在机械上的力
分为外力与内力。
工作循环
jc
je
ò Wde = D W4 = [Med (j ) - Mer (j )]dj
Emax c
a
Wbc
c
Wcd
jd
取 D Wmax = max[Wbc ,Wcd ,Wde ]
Wab
b
b Emin d
e
Wde
d
e
Wea'
a' Em
能量指示图
第八章 平面连杆机构及其设计
1.四杆机构的基本型式
t2 180
称K为行程速比系数。只要 θ ≠ 0 , 就有K >1
且θ越大,K 值越大,急回性质越明显。
设计新机械时,往往先给定K 值,于是:
180o
K K
1 1
3.铰链四杆机构的传动角和死点 (1)压力角 从动件驱动力F与力作用点绝对速度之间所夹角度。 (2)传动角γ
连杆与从动件之间的夹角γ ,用来表示机构传动力 性能的好坏。且 γ =90°- α ≤90° 设计时要求:γmin≥50°
2)其偏斜的方向应与相对速度v12的方向相反。
FN21
φ
v12 1F G2
3.转动副总反力方向的确定
▪ 根据力的平衡条件,确定不计摩擦时总反力的方向;
▪ 计摩擦时的总反力应与摩擦圆相切;
▪ 总反力FR21 对轴心之矩的方向必与轴颈1相对轴承2的相对 角速度的方向相反。 G
ω12 ρ
Md
O
FR21
FN21
Wcd
Wea' Mer
用能量指示图确定最大盈亏功 ΔWmax的大小。
jc
Wab Wbc
ab c
E
Emax
ò Wbc = D W2 = [Med (j ) - Mer (j )]dj
jb
a
jd
b
Emin c
Wde
de
Med
a' φ
d
Em
e
a'
φ
ò Wcd = D W3 = [Med (j ) - Mer (j )]dj
① 计算机构的自由度,确定原动件。 ② 从远离原动件的地方开始拆杆组。先试拆Ⅱ级组,当不可能
时再试拆Ⅲ级组。但应注意,每拆出一个杆组后,剩下的部 分仍组成机构,且自由度与原机构相同,直至全部杆组拆出 只剩下Ⅰ级机构。 ③ 确定机构的级别。
第三章平面机构的运动分析
1.速度瞬心及其位置确定 (1)速度瞬心 两个互相作平面运动的构件上瞬时速度相等的 重合点。 简单地说是两构件的等速重合点。
J si
wi2 w2
+
3 i= 1
mi
vs2i w2
邋 Me =
3 i= 1
Fi
cos
a
i
(
vi w
)
?
3 i= 1
M
i
(
wi w
)
当选择移动构件作等效构件时,常用到等效质量me和等效力Fe 。 y
ω1
A
2
ω2
1
O
M1 s2
vS2 B 3
x
等效
Fe
φ1
v3
F3
邋 me =
3 i= 1
J si
wi2 w2
(3)运动副中的反力:运动副所连接的构件之间的
相互作用力(内力)。
2.移动副总反力方向的确定
FR21
运动副中的法向反力与摩擦力
的合力FR21 称为运动副中的总反力,
总反力与法向力之间的夹角φ,称
为摩擦角, 即
φ = arctan f
Ff21
总反力方向的确定方法:
1)FR21偏斜于法向反力一个摩擦角φ ;
最小传动角的确定:对于曲柄摇杆机构,γmin出现在曲柄 (主动件)与机架共线的两位置之一。
(3)铰链四杆机构的死点
以摇杆为主动件;且连杆与从动曲柄两次共线时, 摇杆通过连杆作用于曲柄上的力恰好通过其回转中 心,出现了不能使曲柄转动的现象,该位置称为死
点,死点位置有:γ=0。
第九章 凸轮机构
1.凸轮机构的分类
绝对瞬心-等速重合点绝对速度为零。 相对瞬心-等速重合点绝对速度不为零。
瞬心的表示:构件i 和 j 的瞬心用Pij表示。
2.三心定理: 三个相互作平面(平行)运动构件的三
个速度瞬心位于同一直线上。 其中一个瞬心将另外两个瞬心的联线分
成与各自角速度成反比的两条线段。
3. 用矢量方程图解法作机构的速度及加速度分析
(2)按推杆形状和运动形式分 按推杆形状分 1)尖顶推杆 2)滚子推杆 3)平底推杆 按运动形式分 1)对心直动推杆 2)偏置直动推杆 3)摆动推杆
尖顶推杆
滚子推杆
平底推杆
2.凸轮命名规则、术语 名称=“推杆的运动形式+推杆形状+凸轮形状+机构”
实例:
直动滚子盘形凸轮机构
摆动滚子圆柱凸轮机构
3.凸轮的基圆、工作轮廓、理论轮廓
(1)驱动力(外力): 驱动机械运动的力。
其特征:与其作用点的速度方向相同或者成锐角; 其功为正功,称为驱动功或输入功。
(2)阻抗力(外力):
阻止机械运动的力。 其特征:与其作用点的速度方向相反或成钝角; 其功为负功,称为阻抗功。
1)工作阻力:其功称为有效功或输出功; 2)有害阻力:其功为负功,称为损失功。
对于冲床等设备的传动机构,考虑与不考虑摩擦力 的分析的结果可能相差很大,故对此类设备在力的分析 时必须计及摩擦。
第五章 机械的效率及自锁
1. 机械效率的确定
1)以功表示的计算公式 η=Wr /Wd=1-Wf / Wd (输出功(Wr)比输入功(Wd))
2)以功率表示的计算公式 η=Pr / Pd=1-Pf / Pd (输出功率(Pr)比输入功率(Pd))
ω
ωmax
ωm
ωmin
φ
工作循环
(2)飞轮转动惯量的近似计算 由 d = D W /[(Je + JF )wm2 ] 有 JF = D Wmax /(wm2 [d]) - Je
只要 JF 矰 Wmax /(wm2 [d]) - Je 便有 d < [d] 。
即机械的速度波动满足给定的要求。
(3)最大盈亏功ΔWmax的确定 Me
2. 机构的自锁
(1)自锁现象
某些机构,就其机构而言是能够运动的,但由于摩擦的存在, 却会出现无论驱动力如何增大,也无法使机械运动的现象。
(2)自锁条件
机械发生自锁实质上是机械中的运动副发生的自锁。
3.移动副自锁条件
结论:移动副发生自锁的条件为:在移动副中,如果作用于 滑块上的驱动力作用在其摩擦角之内(即β≤φ),则发生自锁。
2.对于动不平衡的转子,无论其具有多少个偏心质量 以及分布在多少个回转平面内,都只要在两个选定的 平衡基面内加上或去掉平衡质量,即可获得完全平衡。 故动平衡又称为双面平衡。
(2)机构的平衡 对平面连杆机构,由于作往复运动和
平面运动的构件总是存在加速度,就单个构 件而言,是无法平衡的。但可以将整个机构 一并考虑,采取措施对总的惯性力或惯性力 矩进行平衡。
铰链四 杆机构
(1)曲柄摇杆机构 (2)双曲柄机构 (3)双摇杆机构 (4)曲柄滑块机构
2.铰链四杆机构类型的判断
第一种情况:若最短杆+最长杆≤其他两杆之和(满足杆长和条件) 1)若选最短杆的相邻杆做机架:曲柄摇杆机构。 2)若选最短杆做机架:双曲柄机构。 3)若选最短杆的对面的杆做机架:双摇杆机构。 第二种情况:若最短杆+最长杆>其他两杆之和(不满足杆长和条件)
机构的组成:机构=机架+原动件+从动件
1个
1个或几个
若干
2.机构运动简图:根据机构的运动尺寸,按一 定的比例尺定出各运动副的位置,采用运动副 及常用机构运动简图符号和构件的表示方法, 将机构运动传递情况表示出来的简化图形。
3.机构的自由度
使机构具有确定运动时所必须给定的独立 运动参数的数目,称为机构的自由度。
+
3 i= 1
mi
vs2i w2
å Fe =
n i= 1
[Fi
cos
相关主题