当前位置:
文档之家› 第四章大气污染物扩散模式(4)
第四章大气污染物扩散模式(4)
第四章 大气污染物扩散模式
1.湍流扩散的基本理论 2.高斯扩散模式 3.污染物浓度的估算方法 4.特殊气象条件下的扩散模式 5.城市及山区的扩散模式 6.烟囱高度设计
第一节 湍流扩散的基本理论
扩散的要素 风:平流输送为主,风大则湍流大 湍流:扩散比分子扩散快105~106倍 风、湍流是决定污染物在大气中稀释扩散的最直接因素。
像源的贡献
c( x,
yρ, 2z, H )
qБайду номын сангаас
2πu
y z
exp[
(
y2
2
2 y
(z H )2
2
2 z
)]
实际浓度
ρ(x,y,cz(,xH, y), z, H
)
q 2πu
y
z
exp(
y2
2
2 y
){exp[
(z H
2
2 y
)2
]
exp[
(z H
2
2 z
)2
]}
高架连续点源扩散模式
地面浓度模式:取z=0代入上式,得
c( x,
y,
z)
q
2πu
y z
exp[
(
y2
2
2 y
z2
2
2 z
)]
高架连续点源扩散模式
实际浓度
c( x,
y,
z,
H
)
q
2πu
y
z
exp(
y2
2
2 y
){exp[
(z H
2
2 y
)2
]
exp[
(z H
2
2 z
)2
]}
地面浓度模式:取z=0代入上式,得
c(x, y,0, H ) q exp( y2 ) exp( H 2 )
中心线以左60 m 、以下20 m处 SO2的浓度。
颗粒物扩散模式
粒径小于15μm的颗粒物可按气体扩散计算 大于15μm的颗粒物:倾斜烟流模式
c( x,
y, 0,
H
)
(1 a)q
2πu y z
exp(
y2
2
2 y
) exp[
(H
vt x
2
2 z
/
u)2
]
vt
d
2 p
p
g
18
地面反射系数
无界空间连续点源扩散模式
2
2 z
)( 1
2 z
)’
令ρ’=0
0=1 1 H 2
2 z
2
z= H
2
m
ax=
Q
u y
z
exp(1) Q z
u
y
2 z
e
Q z 2 u y e H 2
例题:
一工厂在源高H=30m处以20g/s的速度排放SO2,风速 为3m/s,在下风向距离1000m处,扩散系数分别取
σy=30m ,σz=20 m。计算烟流中心线上SO2的浓度;
湍流的基本概念 湍流——大气的无规则运动
风速的脉动(上、下) 风向的摆动(左、右)
起因与两种形式 热力:温度垂直分布不均(不稳定) 机械:垂直方向风速分布不均匀及地面粗糙度
湍流扩散理论
主要阐述湍流与烟流传播及湍流与物质浓度衰减的关系
1.梯度输送理论
➢ 类比于分子扩散,污染物的扩散速率与负浓度梯度成正比
2.湍流统计理论
➢ 泰勒->图4-1,正态分布 ➢ 萨顿实用模式 ➢ 高斯模式(应用最为广泛)
第二节 高斯扩散模式
一、 高斯模式的有关假定 坐标系
右手坐标系(食指—x轴;中指—y轴;拇指—z轴), 原点:为无界点源或地面源的排放点,或者高架源排放 点在地面上的投影点;x为主风向;y为横风向;z为垂直 向
高架连续点源扩散模式
地面最大浓度模式(续):
设
y z
const (实际中成立)
dc(x,0,0, H ) 0 d z
由此求得
cmax
2q πuH 2e
z y
| H2 z xxcmax
地面源高斯模式(令H=0):
c( x,
y, z,0)
q
πu y z
exp[(
y2
2
2 y
z2
2
2 z
)]
相当于无界源的2倍(镜像垂直于地面,源强加倍)
三、高架连续点源扩散模式
高架源须考虑到地面对扩散的影 响。根据假设④可认为地面就象镜 子一样对污染物起全反射作用,按 全反射原理,可用 “像源法”处理 ——把P点污染物浓度看成为两部分(实源和像源)作用之和。
建立三个坐标系:1、以实源在地面的投影点为原点;P点 坐标为(x,y,z); 2、以实源为原点;3、以像源为原点。
c(x, y,0, H ) q exp( y2 ) exp( H 2 )
πu y z
2
2 y
2
2 z
地面轴线浓度模式:再取y=0代入上式
c(x,0,0, H )
q
πu y
z
exp(
H2
2
2 z
)
地面最大浓度模式:
考虑地面轴线浓度模式
c( x, 0, 0,
H)
q
πu y
z
exp(
H2
2
2 z
)
上式,x增大,则 y 、 z 增大,第一项减小,第二 项增大,必然在某x 处有最大值
(1)实源贡献:P点在以实源为原点的坐标系中的垂直坐标为 (z-H)。不考虑地面的影响,实源在P点形成的污染物浓度 为:
实源的贡献
c( x,
ρy,1z, H )
q
2πu
y z
exp[(
y2
2
2 y
(z H )2
2
2 y
)]
(2)像源贡献:P点在以像源为原点的坐标系中的垂直坐 标为(z+H),像源在P点形成的污染物浓度为:
高斯模式的四点假设
a.污染物浓度在y、z风向上分布为正态分布 b.全部高度风速均匀稳定 c.源强是连续均匀稳定的 d.扩散中污染物是守恒的(不考虑转化)
高斯扩散模式
高斯扩散模式的坐标系
二、无界空间连续点源扩散模式
c( x,
y, z)
q
2πu
y z
exp[(
y2
2
2 y
z2
2
2 z
)]
ū — 平均风速,m/s; q—源强, g/s; σy—侧向扩散参数,污染物在y方向分布的标准偏差,m; σz—竖向扩散参数,污染物在z方向分布的标准偏差,m;
设 y z k
则 y k z
上式变为:
= Q exp( H 2 ) A exp( H 2 )
uk
2 z
2
2 z
2 z
2
2 z
‘=A(
1
2 z
)’
exp(
H
2
2
2 z
)
1
2 z
( exp(
H
2
2
2 z
))‘
=A(
1
2 z
)’ exp(
H2
2
2 z
)
1
2 z
exp(
H2
2
2 z
)(
H2
q 源强 计算或实测
u 平均风速 多年的风速资料
H 有效烟囱高度
y 、 z 扩散参数
1.烟气抬升高度的计算
有效源高 H Hs H
Hs ――烟囱几何高度
H ――抬升高度
烟云抬升的原因有两个: ①是烟囱出口处的烟流具有一初始动量(使它们继续垂直 上升);②是因烟流温度高于环境温度产生的静浮力。 这两种动力引起的烟气浮力运动称烟云抬升,烟云抬升有 利于降低地面的污染物浓度。
πu y z
2
2 y
2
2 z
地面轴线浓度模式:再取y=0代入上式
c(x,0,0, H )
q
πu y z
exp(
H2
2
2 z
)
地面最大浓度模式(续):
设
y z
const (实际中成立)
dc(x,0,0, H ) 0
d z
由此求得
cmax
2q πuH 2e
z y
| H2 z xxcmax
第三节 污染物浓度的估算