当前位置:文档之家› 工程流体力学第六章 管内流动和水力计算 液体出流

工程流体力学第六章 管内流动和水力计算 液体出流


第三节
管道进口段粘性流体的流动
边界层:粘性流体流经固体壁面时,固体壁面和流体主 流之间形成的一个流速变化区域,称为边界层。
边界层是一个薄层; 边界层中流体的流动状态也有层流与紊流之分; 边界层的厚度沿流动方向逐渐增长,紊流边界层比 层流边界层增长得快; 边界层相交以前的管段称为进口段;
因沿程损失而消耗的功率:
2 128LqV P F a p A a p qV d 4
说明圆管层流时的实 际动能等于按照 平均流速计算动 能的两倍
l 3 1 23 动能修正系数: ( ) d A 2 6 A A a r0 r0

r0
0
(r02 r 2 )3 2rdr 2
流动阻力的两种类型
能头线的变化规律
一、沿程能量损失
简称沿程损失,是发生在缓变流整个流程中的能量损失, 是由流体的粘滞力造成的损失。
式中 :
达西-魏斯巴赫公式
l 2 hf d 2g

——沿程阻力系数(无量纲)
L ——管子的长度 d ——管子的直径
流动状态:层流、紊流 流速 影响因素 管道的长度、内径 流体的粘度 管壁粗糙程度
t l2
t l2
紊流切应力:
t ( t )
边界条件 当r =r0时 vl=0
旋转抛物面
最大流速:
l max
ro2 d ( p gh) 4 dl
由解析几何知,旋转抛物体的体积等于它的外切圆柱体体积的一半,
故平均流速等于最大流速的一半。
r02 d 1 a l max ( p gh) 2 8 dl
圆管中的流量:
工程上没有 实用意义
实验发现,不论流体的性质和管径如何变化 对于管内流动: Re cr 2320 工程上
Re 'cr 13800
Re cr 2000
由于过渡区流动的复杂性,人们在进行损失计算时,通常按紊流来 处理。即当Re>2000时,即认为流动是紊流。
Re cr平板
l =2.5 105
2、时均化: 对某点的长时间观察发 现,尽管每一时刻速度等参数 的大小和方向都在变化,但它 都是围绕某一个平均值上下波 动。于是流体质点的瞬时值就 可以看成是这个平均值与脉动 值之和。
紊流场可看成是统计平均场和随机脉动场的叠加, 即每一点的瞬时物理量看成是平均值和脉动值之和。

t
o t0 T

由于紊流运动的复杂性,要找出它 的规律还很难。目前所用的都是一 些经验和半经验的公式。
紊流1 紊流2
一. 紊流的发生 紊流发生的机理 扰动使某流 层发生微小 的波动
层流流动的稳定 性丧失(雷诺数 达到临界雷诺数)
流速使波 动幅度加 剧 引起流体 层之间的 混掺 造成 新的 扰动
在横向压差与切 应力的综合作用 下形成旋涡
3. 沿程损失和平均流速的关系 lghf=lgk+nlgV
实验结果
h f k n
式中k为系数,n为指数,均由实验确定
下临界流速
cr
粘性流体的 流动状态
层流 n = 1 可能是层流也可能是紊流
' cr cr
' cr
紊流 n = 1.75~2
上临界流速
雷诺实验结论: 1、得出了层流、紊流两种流动状态; 2、判定层流、紊流的方法; 3、层流、紊流损失规律不同。
动画演示
层流(laminar flow):流速 较低,红墨水迹线平稳。水质 点沿轴向分层平稳流动。 不稳定流动: 流速增大,红 墨水迹线波动。水质点不稳 定,有轴向和垂向的分速度。 紊流 (turbulent flow) : 流速 超过某值时,红墨水迹线破裂。 各层流体质点相互掺混,出现 不规则、随机脉动速度。 实验表明 : 粘性流动存在两种 流动状态——层流和紊流。
2 2
l 2 1 8 动量修正系数: ( ) d A 6 A a r0
对水平放置的圆管: w
r r0

4 (r r ) rdr 3
2 0
r0 p 2 2L 8
动画演示
此式对于圆管中粘性流体的层流和紊流流动都适用
例题 例:在长度l =10000m、直径d=300mm的管路中输送γ= 9.31 kN/m3的重油,其重量流量G=2371.6kN/h,求油温分别为10 oC (ν=25cm2/s)和40 oC(ν=1.5cm2/s)时的水头损失。
解:体积流量
2371 .6 3600 qV 0.0708 m 3 / s 9.31
G
0.0708 1m / s 平均速度 qV / A 2 3.14 0.3 / 4 1)100C时的雷诺数
d Re 120
2)400C时的雷诺数
64 l 2 hf 907 .03m油柱 Re d 2 g
层流状态 过渡状态 紊流状态
2. Reynolds数
(non-dimensional number)
Re
d d v
临界雷诺数Recr——流动状态发生转变时对应的雷诺数。 Reynolds数的物理意义:
惯性力 Re 粘性力
惯性使扰动放大,导致湍流,粘性抑制扰 动使流动保持稳定。当Re→∞时,流动趋于理 想流体运动。

——管子有效截面上的平均流速
f ( , v, d , )
二、局部能量损失
简称局部损失,是发生在流动状态急剧变化的急变流中 的能量损失。是主要由流体微团的碰撞、流体中的涡流等造 成的损失。 2
h
j


2g

——局部损失系数(无量纲),一般由实验确定
弯头 发生位置 变径管 阀门 …
三、紊流中的切向应力 普朗特混合长
紊流的基本理论
基本思想:把紊流中微团的脉动与气体分子的运动相比拟。
两条假设: (1) 类似于分子的平均自由行程,紊流流体 微团有一个“混合长度” l。如图,对于 某一给定的y点,(y+l)和(y-l) 的流体微 团各以时间间隔 dt到达y点,在此之前, 保持原来的时均速度vx(y+l)和vx(y-l)不变; 一旦达到y点,就与该处原流体微团发生碰撞而产生动量交换。 (2) x和y向的速度涨落(脉动)量 和 y 为同阶量。 x y o l l y vy ' dA vx(y+l) vx(y) vx(y-l) x
相对滑移引起的摩擦切应力
y l l y o
du du , dy dy
层流: d
dy
(分子运动)
d (微团脉动) dy
紊流粘性系数
vy ' dA
vx(y+l) vx(y) vx(y-l) x
du dy
紊流: t x y t
流层之间动量 交换引起的脉 动切应力
d Re 2000
64 l 2 hf 54 .42 m油柱 Re d 2 g
第五节 黏性流体的紊流流动
紊流时,流体质点做复杂的无规律的运动。紊流流动实 质上是非定常流动。
层流与紊流的区别
层流:流体层与层之间互不混杂,无动量交 换。 紊流:流体层与层之间互相混杂,动量交换 强烈。
理想流体
黏性流体
主流速度
流体有粘性
壁面处粘附 v = 0
流动的垂直方 向上速度梯度 流层之间 切向应力
沿截面速度的变化
阻力
克服阻力
消耗机械能
转化为热能
流体运动和流动阻力的两种型式 1. 均匀流动和沿程损失hf 均匀流中流体所承受的阻力只有不变的摩擦阻力, 称为沿程阻力。
2. 非均匀流动和局部损失hr 在非均匀流动中,各流段所形成的阻力是各种各样的, 但都集中在很短的流段内,这种阻力称为局部阻力。
第六章
管内流动和水力计算 液体出流
xcli@
主要内容
本章主要讨论液体在管道内的流动状态、 速度分布、能量损失和各类管流的水力计算,以 及液体出流。
章节内容
第一节 第二节 第三节 第四节 第五节 第六节 第七节 管内流动的能量损失 粘性流体的两种流动状态 管道进口段粘性流体的流动 圆管中流体的层流流动 粘性流体的紊流流动 沿程损失的实验研究 非圆形管道沿程损失的计算
渐缩 渐扩 突缩 突扩
整个管道总能量损失:
hw h f h j
能量损失的量纲为长度,工程中也称其为水头损失
第二节
粘性流体的两种流动状态
Reynold (雷诺)
1883
粘性流体两种流动状态:

紊流状态 层流状态
1. 雷诺实验
实验目的:观察粘性流体的流动状态。 实验目的: 实验装置:水箱,染色水,玻璃管,阀门; 实验装置:
, p p p u u u, , www
瞬时速度 平均速度 脉动速度
动画演示: 紊流的脉动

t
时均值定义:
紊流流动在某一空间固定点 上测得的速度随时间的分布
1 ( x, y , z ) T
几何意义:

t
0
( x , y , z , t ) dt
时均速度: 在时间 间隔Δt内轴向速度 的平均值
p
F 0
l
2 2
p dl l

l
p 2 r p r ( p ) 2rdl r dlgsin 0 l
由:
sin d h /d l ; p+ρgh不随r变化
方程两边同除πr2dl : r d ( p gh) 2 dl
粘性流体在圆管中作层流流动时,同一截面上的切向应力 的大小与半径成正比
qV Aa
d 2
相关主题