当前位置:文档之家› 导数在求极限中的应用

导数在求极限中的应用

引言极限是研究变量的变化趋势的基本工具。

在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。

极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。

因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。

本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L’Hospital 法则,Taylor展式法及微分中值定理在求极限中的应用。

旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。

达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。

12 第1章 导数在求极限中的基本应用1.1 导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义 若函数()y f x =在其定义域中的一点0x 处极限0000()()limlim x x f x x f x yx x ∆→∆→+∆-∆=∆∆存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式:000()()()limx x f x f x f x x x →-'=-.下面通过两个例子让大家逐步领悟导数定义法的内涵例1 求极限tan sin 0limsin b x b xx xαα+-→-.解 由于tan sin tan sin tan sin tan sin sin b x b xb x b b b xx xxxxαααααα+-+----=+.所以,tan sin tan sin 0tan limlimlimsin tan sin sin b x b xb x b b b xx x x xxxxxαααααα+-+-→→→---=+ln ln 2ln b b b αααααα=+=.例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设(0)f k '=,试证00()()lim a b f b f a k b a-+→→-=-.证明 (希望把极限式写成导数定义中的形式)3()()()(0)()(0)f b f a b f b f a f a f b a b a b b a a---=----(拟合法思想:把要证的极限值k 写成与此式相似的形式)b ak k k b a b a=--- 两式相减,可得()()()(0)()(0)0f b f a b f b f a f a f k k k b a b a b b a a---≤-≤-+----因0a -→,0b +→,所以有0b a >>,1a bb a b a<--又因(0)f k '=,故当0a -→,0b +→时右端极限为零,原极限获证.1.2 L ’Hospital 法则本节主要总结了L ’ Hospital 法则在求未定式极限中的应用,需要注意的问题,并深入分析了使用L ’ Hospital 法则时实质是对无穷小或无穷大进行降阶.另外还指出L ’ Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ’Hospital 法则L ’Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难. 事实上,这是极限可能存在也可能不存在. 当极限存在时极限值也会有各种各样的可能. 我们称这种类型的极限为00未定型或∞∞未定型. 事实上,未4 定型除以上两种类型外还有0⋅∞,∞-∞,1∞,00,0∞等类型. L ’Hospital 法则: 定理[]4 若函数f 和g 满足:① 0lim ()lim ()0x x x x f x g x →→==;② 在点0x 的某空心邻域00()U x 内可导,且()0g x '≠; ③ 0()lim()x x f x A g x →'='(A 可为有限数或∞); 则00()()limlim ()()x x x x f x f x A g x g x →→'=='. 注:以上结论在0x x ±→,或是x →∞(包括+∞和-∞)时也是成立的.2. L ’Hospital 法则的应用a) L ’Hospital 法则能处理的基本未定型极限是00型或∞∞型例1 求lim nx x x e λ→∞(n 为正整数,0λ>). (∞∞型)解 连续使用L ’Hospital 法则n 次122(1)!lim lim limlim 0n n n x x xn x x x x x x nx n n x n e e e e λλλλλλλ--→∞→∞→∞→∞-===⋅⋅⋅==. 从以上例中可看出L ’Hospital 法则的实质是对无穷小或无穷大进行降阶. 下面再看两个L ’Hospital 法则在解含有变限积分问题中的应用.例2 求03(1cos )limxx t dt x →-⎰.分析:因为0(1cos )x t dt -⎰可导从而连续,所以此问题属于0型,可用L ’Hospital法则求解.解 032(1cos )(1cos )limlim03xx x t dt t dt x x →→--==⎰⎰.例3 求极限11()lim xx f t x dt t αα++→⎰,其中0α>,()f x 为闭区间[]0,1上的连续函数.5解 11110()()lim lim1xxx x f t dtf t t x dt t x ααα++++→→=⎰⎰因0x →时,1x α单调递减趋于+∞, 使用L ’Hospital 法则,则111110001()()()()(0)lim lim lim lim 11xxx x x x f t f x dt f t f x f t x x dt tx xααααααααα+++++++→→→→+-====-⎰⎰. (2)在使用L ’Hospital 法则时,必须验证条件是否满足①所求的极限是否未定型极限;②求完导数后极限是否存在. 其中第二条容易忽略.例4 设()f x 为可导函数,(0)(0)1f f '==,求极限0(sin )1limsin x f x x→-.解 0(sin )1limsin x f x x →-00cos (sin )lim lim (sin )(0)1cos x x x f x f x f x→→'⋅''====. (此题不能用L ’Hospital 法则求解,错误出在题目中没有给出在处连续的条件,所以不知道的极限是否存在,即不满足条件②,题目中只是说在处可导,而定理中要求在的某个邻域中可导)当求导后的极限不存在时,原极限仍可能有极限,所以求导后极限不存在只能说明此时L ’Hospital 法则失效,不能说原式无极限.(3)对于其他未定型或极限0⋅∞、∞-∞、1∞、00、0∞等类型,可分别通过做商、通分、取对数转化成00型或∞∞型的极限,再使用L ’ Hospital 法则.例5 求极限1lim(1)tan 2x x x π→-.解 2111121122lim(1)tan lim lim lim sin 22cot csc 222x x x x x x x x x xπππππππ→→→→---====-.注:这是将0⋅∞型转化成了00型,如果选择不当把它化成∞∞型,则解题过程将会比较复杂. 转化时一般规律是选择求导后式子简单的那种类型.例6 求极限01lim cot x x x→-.解 将它改写成1cos sin cot sin x x x x x x x --=就化成了∞∞型,于是有01lim cot x x x →-2000cos sin sin cos sin cos lim lim lim 0sin 2x x x x x x x x x x x xx x x x→→→---====. “1∞、00、0∞”可以通过如下转化化成型或型:6 [][]()lim ()ln ()()ln ()()ln ()lim ()lim lim g x x ag x f x g x f x g x f x x ax ax af x ee e →→→→===例7 求极限2lim (arctan )x x x π→+∞. (1∞型)解 因为2lim ln(arctan )2lim (arctan )x x x xx x eππ→+∞→+∞=而2lnarctan 2lim ln(arctan )lim1x x x x x xππ→+∞→+∞=22221112arctan 1lim lim 1arctan 1x x x x x x x x π→+∞→+∞⋅-+==⋅=-+- 所以22lim ln(arctan )2lim (arctan )x x x xx x e e πππ→+∞-→+∞==.例8 求极限1ln 0lim(cot )xx x +→. (0∞型)解 因为当0x +→时tan x x ,所以 0ln 111lim 1ln ln ln ln 00011lim(cot )lim()lim()tan x xxxx x x x x x e ex x+→+++--→→→====. (4)利用L ’Hospital 法则求数列极限——Stolz 公式Stolz 公式可以说是数列的L ’Hospital 法则,它对求数列的极限很有用. 定理1[4](∞∞型的Stolz 公式) 设{}n x 严格递增(即n N ∀∈有1n n x x +<)且lim n n x →∞=+∞,若① 11limn n n n n y y a x x -→∞--=-(有限数),则lim n n nya x →∞=; ② a 为+∞或-∞,结论仍然成立.定理2[4](0型的Stolz 公式)设n →∞时0n y →,{}n x 严格单调下降趋于零,若11limn n n n n y y a x x -→∞--=-,则limnn ny a x →∞=(其中a 为有限数,+∞或-∞).7例9 求极限 limln n nn →∞ .解 由于1lim lim 1ln x x x x x→+∞→+∞==+∞,所以lim ln n nn→∞=+∞.例10 证明 1121lim 1p p p p n n n p +→∞++⋅⋅⋅+=+(p 为自然数). 证 11112(1)lim lim(1)p p p p p p p n n n n n n n +++→∞→∞++⋅⋅⋅++=+- 1(1)1lim (1)1(1)12p n pp n p p p p n n →∞-+==+++++⋅⋅⋅+.下面说明Stolz 公式必要时可以重复使用例11 02ln nk n k n C S n ==∑(其中(1)(1)12knn n n k C k-⋅⋅⋅-+=⋅⋅⋅⋅),求lim n n S →∞.解 因2n 单调递增趋于+∞,可应用Stolz 公式1111100022ln ln ln ln lim lim lim (1)21knn nn k k n n k n nk k k nn n n n C C C C C S n n n +++++===→∞→∞→∞+-==+-+∑∑∑ 1011ln (1)ln(1)ln 1lim lim 2121nn k k n n n n n k n k n n +==→∞→∞+++--+==++∑∑(再次使用Stolz 公式)1ln()(1)ln(1)ln ln(1)1limlim(21)(21)22nn n n n n n n n n n n →∞→∞+++--+===+--.例12 求极限1112122223222lim()()()212121n n n -→∞⋅⋅⋅---.解 先取对数,再取极限.8令1112122223222lim()()()212121n n n n x -→∞=⋅⋅⋅---211223121212ln ln ln ln 221221221n n n n n x ---=++⋅⋅⋅+---2121231222(ln 2ln 2ln )2212121n n n n ---=++⋅⋅⋅+--- 应用Stolz 公式1212122ln 121lim ln lim lim ln ln 212222n n nn n n n n n n x ----→∞→∞→∞--===--故, 原式1lim 2n n x →∞==.(5)L ’Hospital 法则与其他方法相结合使用,如与无穷小相结合.例13 求极限22201cos lim sin x x x x →-.解 422240011cos 12lim lim sin 2x x xx x x x →→-==. 有个别题目在使用L ’Hospital 法则时会出现循环现象,此时不能用L ’ Hospital 法则求解, 如下面一例.例14 求极限 lim x xx x x e e e e --→+∞-+.解 221lim lim11x x xx x xx x e e e e e e ----→+∞→+∞--==++.9 第2章 Taylor 展式在求极限问题中的应用本节介绍运用Taylor 公式求解一些较复杂的未定型的函数极限及中值点的极限、无穷远处的极限.定理1[4](带Peano 余项的Taylor 公式)设()f x 在0x 处有n 阶导数,则存在0x 的一个邻域,对于该邻域中的任一点x ,成立()2()0000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-+⋅⋅⋅+-+其中余项()()n r x 满足()0()(())n n r x o x x =- 定理2[4] (带Lagrange 余项的Taylor 公式)设()f x 在[],a b 上有n 阶连续导数,且在(,)a b 上有1n +阶导数. 设[]0,x a b ∈为一定点,则对于任意[],x a b ∈,成立()2()0000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-+⋅⋅⋅+-+其中余项()()n r x 满足(1)()10()()()(1)!n n n f r x x x n ξ++=-+,ξ在x 和0x 之间.注:函数()f x 在0x =处的Taylor 公式又称为函数()f x 的Maclaurin 公式. 几个常用函数的Maclaurin 公式:(为了便于书写,我们写出带Peano 余项的Taylor 公式)① 231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++;② 352122sin (1)()3!5!(21)!n nn x x x x x o x n ++=-+-⋅⋅⋅+-++;③ 24221cos 1(1)()2!4!(2)!n n n x x x x o x n +=-+-⋅⋅⋅+-+; ④ 230123(1)()()()()()()n nn x x x x x o x αααααα+=++++⋅⋅⋅++10其中α为任意实数,(1)(1)()!k k k αααα-⋅⋅⋅-+=,并规定0()1α=;⑤ 2341ln(1)(1)()234nn n x x x x x x o x n -+=-+-⋅⋅⋅+-+; ⑥ 3521122arctan (1)()3521n n n x x x x x o x n +-+=-+-⋅⋅⋅+-++. 1. 用Taylor 公式巧解未定型极限由于L ’Hospital 法则的实质是对分子分母进行降阶,这意味着当遇到分子分母都是较高阶的情况时,必须多次应用L ’Hospital 法则,遇到分子分母有带根号项时,会越微分形式会越复杂. 而用公式则可进一步到位,所以在求解未定型极限时,应该灵活使用公式法解决. 从而避免应用法则出现的解题困难. 例1 求极限 2240cos limx x x e x -→-.解 这是个0未定型极限问题,如果使用L ’Hospital 法则,则分子分母需求导四次,但若使用Taylor 公式,则22422424244001[1()][1()()()]cos 2!4!22!2lim lim x x x x x x x o x o x x e x x-→→-++-+-+-+-= 44401()112lim 12x x o x x →-+==-.例2 求极限0x →.解 这也是个0未定型的极限问题,因2441()624x x o x =-+,4224sin ln(1sin )sin (sin )2x x x o x +=-+用324sin [()]6x x x o x =-+代入,即有42245ln(1sin )()6x x x o x +=-+于是240ln(1sin )1)lim x x x →+-11 424244405[()]6[()]76624lim 12x x x x x o x o x x →-+--+==-. 2. 用Taylor 公式求中值点的极限例3 (《本题选自数学分析中的典型问题与方法》 裴礼文. 第2版. 第251页) 设(1)()f x 在00(,)x x δδ-+内是n 阶连续可微函数,此处0δ>; (2)当2,3,(1)k n =⋅⋅⋅-时,有()0()0n f x =但是(1)0()0n f x +≠; (3)当0h δ≠<时有000()()(())f x h f x f x h h hθ+-'=+ ①其中0()1h θ<<证明:lim ()h h θ→∞=证 我们要设法从①式中解出()h θ,为此我们将①式左边的0()f x h + 及右边的0(())f x h h θ'+在0x 处展开.由条件(2)知 12,(0,1)θθ∃∈ 使得()00001()()()()!n n h f x h f x hf x f x h n θ'+=+++(1)1()0002(())(())()(())(1)!n n n h h f x h h f x f x h h n θθθθ--''+=++-于是①式变成1(1)1()()001002(())()()()(())!(1)!n n n n n h h h f x f x h f x f x h h n n θθθθ---''++=++-从而()h θ=因 12,()(0,1)h θθθ∈,利用()()n f x的连续性,可得lim ()h h θ→∞=注:此题若用L ’Hospital 法则做将不胜其烦.例4 设()()()()(),(01)!n n h f x h f x hf x f x h n θθ'+=++⋅⋅⋅++<<, 且(1)()0n f x +≠,证明:01lim 1h n θ→=+.12提示:1()(1)1()()()()()()!(1)!n n n n n h h f x h f x hf x f x f x o h n n +++'+=++⋅⋅⋅++++从而有()()(1)()()()()1n n n f x h f x h hf x o h h n θθθ++-=++. 证明 2()11()()()()()2!!n n f x h f x hf x f x h f x h h n θ'''+=+++⋅⋅⋅++ 2()11()()()()2!!n n f x hf x f x h f x h n '''=+++⋅⋅⋅+(1)111()()(1)!n n n f x h o h n ++++++另0,h →得到(1)(1)01lim ()()1n n h f x f x n θ++→⋅=+, 再由(1)()0n f x +≠,两边消去(1)()n f x +,即得到01lim 1h n θ→=+. 3. 用Taylor 公式求无穷远处的极限例5 (《本题选自数学分析中的典型问题与方法》 裴礼文. 第2版. 第249页)设函数()x ϕ在[)0,+∞上二次连续可微,如果lim ()x x ϕ→+∞存在,且()x ϕ'' 在[)0,+∞上有界,试证:lim ()0x x ϕ→+∞'=. 证明 要证明lim ()0x x ϕ→+∞'=,即要证明:0,0ε∀>∃∆>当0∆>时()x ϕε'<利用Taylor 公式,210,()()()()2h x h x x h h ϕϕϕϕξ'''∀>+=++即11()[()()]()2x x h x h h ϕϕϕϕξ'''=+-- ①记lim ()x A x ϕ→+∞=因ϕ''有界,所以,0M ∃>使得()x M ϕ''≤,(对x a ∀≥)故由①知211()(()())2x x h A A x Mh h ϕϕϕ'≤+-+-+ ② 对0ε∀>,首先可取0h >充分小,使得2122Mh ε<,然后将h 固定,因lim ()x x A ϕ→+∞=,所以0∃∆>,当0x >时,1(()())2x h A A x h εϕϕ+-+-< 从而由 ②式, 即得()22x εεϕε'<+=.13 第3章 微分中值定理在求极限问题中的应用微分中值定理是Role 定理,Lagrange 中值定理,Cauchy 中值定理和Taylor 中值定理的统称。

相关主题